日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在等腰Rt△ABC中,P是斜邊BC的中點,以P為頂點的直角的兩邊分別與邊AB,AC交于點E,F(xiàn),連接EF。當∠EPF繞頂點P旋轉(zhuǎn)時(點E不與A,B重合),△PEF也始終是等腰直角三角形,請你說明理由。

          解:連接PA,PA是等腰△ABC底邊上的中線。

          ∴PA⊥PC(等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合)。

          又AB⊥AC, ∴∠l=90°-∠PAC,∠C=90°-∠PAC,

          ∴∠l=∠C(等量代換).

          同樣,由PA⊥PC,PE⊥PF可得∠2=∠3。

          由PA是Rt△ABC斜邊上的中線,得

          (直角三角形斜邊上的中線等于斜邊的一半)。  

          在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,

          ∴△PAE≌△PCF(ASA).

          ∴PE=PF(全等三角形對應邊相等)。 

          因此,△PEF始終是等腰直角三角形。

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結(jié)論:
          ①△DFE是等腰直角三角形;
          ②四邊形CDFE不可能為正方形,
          ③DE長度的最小值為4;
          ④四邊形CDFE的面積保持不變;
          ⑤△CDE面積的最大值為8.
          其中正確的結(jié)論是( 。
          A、①②③B、①④⑤C、①③④D、③④⑤

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊精英家教網(wǎng)上運動,且保持AD=CE.連接DE、DF、EF.
          ①求證:△DFE是等腰直角三角形;
          ②在此運動變化的過程中,四邊形CDFE的面積是否保持不變?試說明理由.
          ③求△CDE面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
          ADDC
          =
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點M、N是AB上任意兩點,且∠MCN=45°,點T為AB的中點.以下結(jié)論:①AB=
          2
          AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號是(  )
          A、①②③④B、只有①②③
          C、只有①③④D、只有②④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在等腰Rt△ABC中,∠C=90°,AC=8
          2
          ,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.
          (1)在此運動變化的過程中,△DFE是
          等腰直角
          等腰直角
          三角形;
          (2)若AD=
          2
          ,求△DFE的面積.

          查看答案和解析>>

          同步練習冊答案