日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,ABC 中,AB=BC,∠ABC=90°,F AB 延長(zhǎng)線上一點(diǎn),點(diǎn) E BC 上,且 AE=CF.

          1)求證: AECF;

          2)若∠CAE=25°,求∠ACF 的度數(shù).

          【答案】1)見解析;(265°.

          【解析】

          1)運(yùn)用HL定理直接證明ABE≌△CBF,即可解決問題.
          2)證明∠BAE=BCF=25°;求出∠ACB=45°,即可解決問題.

          如圖,延長(zhǎng)AECF于點(diǎn)H,

          RtABERtCBF中,

          ∴△ABE≌△CBFHL
          ∴∠BAE=BCF,
          ∵∠F+BCF=90°,
          ∴∠BAE+F=90°
          ∴∠AHF=90°,
          AECF
          2)∵AB=BC,∠ABC=90°,
          ∴∠ACB=45°=BAC,且∠CAE=25°,
          ∴∠BAE=20°,
          ∵△ABE≌△CBF,
          ∴∠BAE=BCF=20°,
          ∴∠ACF=65°

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,E是矩形ABCD的邊AD上一點(diǎn),且BE=ED,P是對(duì)角線BD上任一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F,G,求證:PF+PG=AB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),BOC=130°.

          (1)求證:OB=DC;

          (2)求DCO的大。

          (3)設(shè)AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】先閱讀一段文字,再回答下列問題:

          已知在平面內(nèi)兩點(diǎn)坐標(biāo)P1(x1,y1)P2(x2,y2),其兩點(diǎn)間距離公式為 ,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于x軸或垂直于x軸距離公式可簡(jiǎn)化成|x2-x1||y2-y1|

          (1)已知A(3,5),B(-2,-1),試求AB兩點(diǎn)的距離;

          (2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為-1,試求A,B兩點(diǎn)的距離.

          (3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為A(0,6),B(-3,2),C(32),你能斷定此三角形的形狀嗎?說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,∠B=∠C,D,EF分別是BC,AC,AB上的點(diǎn),且BFCDBDCE,∠FDE55°,則∠A_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,DEABE,DFACF,若BDCDBECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形ABCD的對(duì)角線長(zhǎng)為2,將正方形ABCD沿直線EF折疊,則圖中陰影部分的周長(zhǎng)為(  )

          A. 8 B. 4 C. 8 D. 6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)畫出△ABC關(guān)于y軸的對(duì)稱圖形,其中A、BC的對(duì)應(yīng)點(diǎn)分別為,,

          (2)= .

          (3)畫出以為腰的等腰△CAD,點(diǎn)Dy軸右側(cè)的小正方形的頂點(diǎn)上,且△CAD的面積為6 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,然后解決問題:和、差、倍、分等問題中有著廣泛的應(yīng)用,

          截長(zhǎng)法與補(bǔ)短法在證明線段的和、差、倍、分等問題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長(zhǎng),使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識(shí)來解決數(shù)學(xué)問題.

          1)如圖1,在ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.

          解決此問題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE,把ABAC、2AD集中在ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是

          2)問題解決:

          如圖2,在四邊形ABCD中,AB=AD,∠ABC+ADC=180°,E、F分別是邊BC,邊CD上的兩點(diǎn),且∠EAF=BAD,求證:BE+DF=EF

          3)問題拓展:

          如圖3,在ABC中,∠ACB=90°,∠CAB=60°,點(diǎn)DABC外角平分線上一點(diǎn),DEACCA延長(zhǎng)線于點(diǎn)E,FAC上一點(diǎn),且DF=DB.求證:AC-AE=AF

          查看答案和解析>>

          同步練習(xí)冊(cè)答案