日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知AD=BC,AC=BD.
          (1)求證:△ADB≌△BCA;
          (2)OA與OB相等嗎?若相等,請(qǐng)說(shuō)明理由.

          【答案】
          (1)證明:∵在△ADB和△BCA中,

          ,

          ∴△ADB≌△BCA(SSS)


          (2)解:OA=OB,

          理由是:∵△ADB≌△BCA,

          ∴∠ABD=∠BAC,

          ∴OA=OB


          【解析】(1)根據(jù)SSS定理推出全等即可;(2)根據(jù)全等得出∠OAB=∠OBA,根據(jù)等角對(duì)等邊得出即可.本題考查了全等三角形的性質(zhì)和判定,等腰三角形的判定的應(yīng)用,能正確運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵.
          【考點(diǎn)精析】關(guān)于本題考查的等腰三角形的判定,需要了解如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱(chēng):等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD的邊長(zhǎng)為8cm,E、FG分別是AB、CDDA上的動(dòng)點(diǎn),且AE=BF=CG=DH.
          (1)求證:四邊形EFGH是正方形;
          (2)判斷直線EG是否經(jīng)過(guò)某一定點(diǎn),說(shuō)明理由;
          (3)求四邊形EFGH面積的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A、B(m+2,0)與y軸相交于點(diǎn)C,點(diǎn)D在該拋物線上,坐標(biāo)為(m,c),則點(diǎn)A的坐標(biāo)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,將二次函數(shù)y=x2﹣1的圖象M沿x軸翻折,把所得到的圖象向右平移2個(gè)單位長(zhǎng)度后再向上平移8個(gè)單位長(zhǎng)度,得到二次函數(shù)圖象N.

          (1)求N的函數(shù)表達(dá)式;
          (2)設(shè)點(diǎn)P(m,n)是以點(diǎn)C(1,4)為圓心、1為半徑的圓上一動(dòng)點(diǎn),二次函數(shù)的圖象M與x軸相交于兩點(diǎn)A、B,求PA2+PB2的最大值;
          (3)若一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo)均為整數(shù),則該點(diǎn)稱(chēng)為整點(diǎn).求M與N所圍成封閉圖形內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過(guò)程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(﹣3,0)、B(5,0)、C(0,5)三點(diǎn),O為坐標(biāo)原點(diǎn)

          (1)求此拋物線的解析式;
          (2)若把拋物線y=ax2+bx+c(a≠0)向下平移 個(gè)單位長(zhǎng)度,再向右平移n(n>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)M在△ABC內(nèi),求n的取值范圍;
          (3)設(shè)點(diǎn)P在y軸上,且滿(mǎn)足∠OPA+∠OCA=∠CBA,求CP的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,CD是⊙O的弦,AB是直徑,且CD∥AB,連接AC、AD、OD,其中AC=CD,過(guò)點(diǎn)B的切線交CD的延長(zhǎng)線于E.
          (1)求證:DA平分∠CDO;
          (2)若AB=12,求圖中陰影部分的周長(zhǎng)之和(參考數(shù)據(jù):π=3.1, =1.4, =1.7)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】九年級(jí)(3)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷(xiāo)售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷(xiāo)售量為p(單位:件),每天的銷(xiāo)售利潤(rùn)為w(單位:元).

          時(shí)間x(天)

          1

          30

          60

          90

          每天銷(xiāo)售量p(件)

          198

          140

          80

          20


          (1)求出w與x的函數(shù)關(guān)系式;
          (2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?并求出最大利潤(rùn);
          (3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天的銷(xiāo)售利潤(rùn)不低于5600元?請(qǐng)直接寫(xiě)出結(jié)果.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】
          (1)計(jì)算: ﹣(﹣1)2+(﹣2012)0
          (2)因式分解:m3n﹣9mn.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案