日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當-1≤x≤1時,下列式子有意義的是( 。
          分析:根據(jù)x的取值范圍判斷出各選項中的被開方數(shù)的正負情況,然后根據(jù)二次根式有意義,被開方數(shù)大于等于0判斷.
          解答:解:A、-
          3
          2
          ≤x-
          1
          2
          1
          2
          ,故本選項錯誤;
          B、-
          3
          2
          1
          2
          -x≤
          1
          2
          ,故本選項錯誤;
          C、(1+x)(1-x)≥0,故本選項正確;
          D、x=-1時,分母無意義,故本選項錯誤.
          故選C.
          點評:本題考查的知識點為:分式有意義,分母不為0;二次根式的被開方數(shù)是非負數(shù),判斷出各選項中的x的正負情況是解題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          已知拋物線y=(1-m)x2+4x-3開口向下,與x軸交于A(x1,0),B(x2,0)兩點,其中x1<x2
          (1)求m的取值范圍;
          (2)當x12+x22=10時,求拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知等腰梯形中,AB=DC=2,AD∥BC,AD=3,腰與底相交所成的銳角為60°,動點P在線段BC上運動( 點P不與B、C點重合),并且∠APQ=60°,PQ交射線CD于點Q,若CQ=y,BP=x,
          (1)求下底BC的長.
          (2)求y與x的函數(shù)解析式,并指出當點P運動到何位置時,線段CQ最長,最大值為多少?
          (3)在(2)的條件下,當CQ最長時,PQ與AD交于點E,求QE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•河東區(qū)一模)如圖,在平面直角坐標系xOy中,矩形AOCD的頂點A的坐標是(0,4),現(xiàn)有兩動點P、Q,點P從點O出發(fā)沿線段OC(不包括端點O,C)以每秒2個單位長度的速度,勻速向點C運動,點Q從點C出發(fā)沿線段CD(不包括端點C,D)以每秒1個單位長度的速度勻速向點D運動.點P、Q同時出發(fā),同時停止,設運動時間為t秒,當t=2秒時PQ=2
          5

          (Ⅰ)求點D的坐標,并直接寫出t的取值范圍;
          (Ⅱ)連接AQ并延長交x軸于點E,把AE沿AD翻折交CD延長線于點F,連接EF,則△AEF的面積S是否隨t的變化而變化?若變化,求出S與t的函數(shù)關(guān)系式;若不變化,求出S的值.
          (Ⅲ)在(Ⅱ)的條件下,t為何值時,PQ∥AF?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          問題背景:
          若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
          1
          2
          x
          (x>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
          提出新問題:
          若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌?
          分析問題:
          若設該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
          1
          x
          )
          (x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(小)值了.
          解決問題:
          借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y=2(x+
          1
          x
          )
          (x>0)的最大(。┲担
          (1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
          1
          x
          )
          (x>0)的圖象:
          x 1/4 1/3 1/2 1 2 3 4
          y
          17
          2
          20
          3
          5 4 5
          20
          3
          17
          2
          (2)觀察猜想:觀察該函數(shù)的圖象,猜想當x=
          1
          1
          時,函數(shù)y=2(x+
          1
          x
          )
          (x>0)有最
          值(填“大”或“小”),是
          4
          4

          (3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
          1
          2
          x
          (x>0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
          1
          x
          )
          (x>0)的最大(。┲担宰C明你的猜想.〔提示:當x>0時,x=(
          x
          )2

          查看答案和解析>>

          科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

          面積一定的梯形,其上底長是下底長的,設下底長x=10 cm時,高y=6 cm

          (1)yx的函數(shù)關(guān)系式;

          (2)求當y=5 cm時,下底長多少?

           

          查看答案和解析>>

          同步練習冊答案