證明:(1)∵四邊形ADEF是正方形,
∴AD=AF,∠FAD=90°=∠BAC,
∴∠FAD-∠DAC=∠BAC-∠DAC,
∴∠FAC=∠BAD,
在△ABD和△ACF中

,
∴△ABD≌△ACF(SAS),
∴∠B=∠FCA,
∵∠BAC=90°,
∴∠B+∠ACB=90°,
∴∠ACB+∠ACF=90°,
∴FC⊥BC.

(2)∵△ABD≌△ACF,
∴BD=CF,
∵BD=AC,
∴AC=CF,
∴∠CAF=∠CFA,
∵四邊形ADEF是正方形,
∴AD=EF,∠DAF=∠EFA=90°,
∴∠DAF-∠CAF=∠EFA-∠CFA,
∴∠DAC=∠EFC,
在△DAC和△EFC中

,
∴△DAC≌△EFC(SAS),
∴CD=CE.
分析:(1)根據(jù)正方形的性質(zhì)得出AD=AF,∠FAD=90°=∠BAC,求出∠FAC=∠BAD,證出△ABD≌△ACF,推出∠B=∠FCA即可;
(2)根據(jù)△ABD≌△ACF,推出BD=CF=AC,求出∠DAC=∠EFC,根據(jù)SAS推出△DAC≌△EFC即可.
點評:本題考查了正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運用定理進行推理的能力.