日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
          x -1 0 1 2 3 4
          x2+bx+c 3 -1 3
          (1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格空白處的對應(yīng)值;
          (2)設(shè)y=x2+bx+c的圖象與x軸的交點為A、B兩點(A點在B點左側(cè)),與y軸交于點C,P為線段AB上一動點,過P點作PE∥AC交BC于E,連接PC,當△PEC的面積最大時,求P點的坐標.
          精英家教網(wǎng)
          分析:(1)可先任取兩組已知的數(shù)據(jù)求出拋物線y=x2+bx+c的解析式,然后將x=-1,x=1,x=3的值分別代入拋物線的解析式中,即可求出y的值,即x2+bx+c的值.
          (2)本題可先求出△PEC的面積和P點坐標之間的函數(shù)關(guān)系式,然后根據(jù)函數(shù)的性質(zhì)進行求解.由于三角形PEC的面積無法直接求出,因此可用S△PEC=S△BCP-S△BPE來求.設(shè)出P點的坐標,然后表示出BP的長,那么關(guān)鍵就是△PBE的高,可過E作x軸的垂線,然后根據(jù)相似三角形BPE和BAC來求出△PBE的高,進而可根據(jù)上面分析的△PEC面積的求法得出關(guān)于S與P點橫坐標的函數(shù)關(guān)系式,然后根據(jù)函數(shù)的性質(zhì)即可得出S的最大值以及對應(yīng)的P點的坐標.
          解答:解:(1)當x=0和x=4時,均有函數(shù)值y=3,
          ∴函數(shù)的對稱軸為x=2
          ∴頂點坐標為(2,-1)
          即對應(yīng)關(guān)系滿足y=(x-2)2-1,
          ∴y=x2-4x+3,
          ∴當x=-1時,y=8;x=1時,y=0;x=3時,y=0.
          x -1 0 1 2 3 4
          x2+bx+c  8 3  0  -1 0 3
          (2分)

          (2)解:函數(shù)圖象與x軸交于A(1,0)、B(3,0);
          與y軸交于點C(0,3),
          精英家教網(wǎng)
          設(shè)P點坐標為(x,0),則PB=3-x,
          ∴S△BCP=
          3
          2
          (3-x),
          ∵PE∥AC,
          ∴△BEP∽△BCA作EF⊥OB于F,
          BP
          BA
          =
          EF
          CO
          ,
          3-x
          2
          =
          EF
          3

          ∴EF=
          3
          2
          (3-x),
          ∴S△BPE=
          1
          2
          BP•EF=
          3
          4
          (3-x)2
          ∵S△PEC=S△BCP-S△BPE
          ∴S△PEC=
          3
          2
          (3-x)-
          3
          4
          (3-x)2
          S△PEC=-
          3
          4
          x2+3x-
          9
          4
          =-
          3
          4
          (x-2)2+
          3
          4

          ∴當x=2時,y最大=
          3
          4

          ∴P點坐標是(2,0).
          點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圖形的面積求法、三角形相似等重要知識點,考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.(不規(guī)則圖形的面積通常轉(zhuǎn)化為規(guī)則圖形的面積的和差.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
               x  …  0  1  2
           x2+bx+c  …  3   -1    3
          (1)請在表內(nèi)的空格中填入適當?shù)臄?shù);
          (2)設(shè)y=x2+bx+c,則當x取何值時,y>0;
          (3)請說明經(jīng)過怎樣平移函數(shù)y=x2+bx+c的圖象得到函數(shù)y=x2的圖象?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          20、下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
          x 0 1 2 3 4
          x2+bx+c 3 -1 3
          (1)求b,c的值;
          (2)設(shè)y=x2+bx+c,當x取何值時,y隨x的增大而增大?
          (3)函數(shù)y=x2+bx+c的圖象經(jīng)過怎樣平移可得到函數(shù)y=x2的圖象?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
          x -1 0 1 2 3 4
          X2+bx+c   3   -1   3
          (1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格中空白處的對應(yīng)值;
          (2)代數(shù)式x2+bx+c是否有最小值?如果有,求出最小值;如果沒有,請說明理由;
          (3)設(shè)y=x2+bx+c的圖象與x軸的交點為A、B兩點(A點在B點左側(cè)),與y軸交于點C,P點為線段AB上一動點,過P點作PE∥AC交BC于E,連接PC,當△PEC的面積最大時,求P點的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
          x 0 1 2 3 4
          x2+bx+c 3 -1 3
          函數(shù)y=x2的圖象可以通過平移得到函數(shù)y=x2+bx+c的圖象.請寫出一種正確的平移
           

          查看答案和解析>>

          同步練習(xí)冊答案