日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知矩形紙片BDEF和直角三角板BCA,點AEF上,ACDE,FE=3,C=90°,CBA=30°.

          (1)寫出三種不同類型的結(jié)論.

          (2)將直角三角板繞點B旋轉(zhuǎn),在旋轉(zhuǎn)過程中,

          ①求點A與點E的最短距離;

          ②若將直角三角板繞點B從①中位置開始順時針旋轉(zhuǎn)α(0≤α≤360),使∠BAE=90°,求α的度數(shù).

          【答案】(1)見解析;(2)②2;②60°和300°.

          【解析】

          (1)Rt△ABC中,由∠C=90°,AC=可以求出∠BAC,AB、BC,通過AB=2BF∠FAB=30°,進(jìn)而得到AG=BG;

          (2)①如圖當(dāng)A、B、E共線時,AE最小,求出BE長即可得;

          ②分兩種情況畫出圖形,求出∠EBA′∠EBA″即可.

          (1)Rt△ABC中,∵∠C=90°,AC,∠CBA=30°,

          ∴AB=2AC=2,BC==3,

          ∠BAC=90°-∠ABC=60°,

          四邊形BDEF是矩形,

          ∴BF=ED=AC=,∠F=90°,

          ∴AB=2BF,∠FAB=30°,

          ∴∠GBA=∠GAB,

          ∴GB=GA,

          三個不同類型的結(jié)論為:AB=2,∠BAC=90°=60°,GB=GA(答案不唯一,只要合理即可)

          (2)①如圖,當(dāng)點B,A,E三點共線時,AE最短,連接BE,

          四邊形BDEF是矩形,

          ∴∠D=90°,BD=EF=3,BF=DE=

          BE===4,

          AE=BE-AB=4-2=2

          在圖1,∵∠BA′E=90°,

          ∴cos∠EBA′=,

          ∴∠EBA′=60°,

          同理,在圖2,∠A″BE=60°,

          ∴旋轉(zhuǎn)角α=60°300°.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠ACB90°,以點B為圓心,BC長為半徑畫弧,交線段AB于點D;以點A為圓心,AD長為半徑畫弧,交線段AC于點E,連結(jié)CD

          1)若∠A28°,求∠ACD的度數(shù).

          2)設(shè)BCaACb

          ①線段AD的長是方程x2+2axb20的一個根嗎?說明理由.

          ②若ADEC,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,銳角△ABC BC=a,AC=b,AB=c,記三角形 ABC 的面積為 S.

          (1)求證:S=absinC;

          (2)求證:.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結(jié)果用根號表示,不取近似值).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.

          1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.

          2)若已確定甲打第一場,再從其余三位同學(xué)中隨機選取一位,求恰好選中乙同學(xué)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了有效地落實國家精準(zhǔn)扶貧政策,切實關(guān)愛貧困家庭學(xué)生.某校對全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了調(diào)查.發(fā)現(xiàn)每個班級都有貧困家庭學(xué)生,經(jīng)統(tǒng)計班上貧困家庭學(xué)生人數(shù)分別有1名、2名、3名、5名,共四種情況,并將其制成了如下兩幅不完整的統(tǒng)計圖:

          (1)填空:a = ,b=

          (2)求這所學(xué)校平均每班貧困學(xué)生人數(shù);

          (3)某愛心人士決定從2名貧困家庭學(xué)生的這些班級中,任選兩名進(jìn)行幫扶,請用列表或畫樹狀圖的方法,求出被選中的兩名學(xué)生來自同一班級的概率.

          貧困學(xué)生人數(shù)

          班級數(shù)

          1

          5

          2

          2

          3

          a

          5

          1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,PA、PB、CDO的切線,A、B、E是切點,CD分別交PA、PBC、D兩點,若∠APB=40°,PA=5,則下列結(jié)論:PAPB=5;PCD的周長為5;COD=70°.正確的個數(shù)為( 。

          A. 3 B. 2 C. 1 D. 0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點:如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:

          (1)如圖1,A=B=DEC=45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;

          (2)如圖2,在矩形ABCD中,A、B、C、D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點;  

          (3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究ABBC的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE

          求證:1∠CEB=∠CBE;

          2)四邊形BCED是菱形.

          查看答案和解析>>

          同步練習(xí)冊答案