日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】求不等式(2x﹣1)(x+3)>0的解集.

          解:根據(jù)“同號(hào)兩數(shù)相乘,積為正”可得:①或 ②

          解①得x>;解②得x<﹣3.

          ∴不等式的解集為x>或x<﹣3.

          請(qǐng)你仿照上述方法解決下列問(wèn)題:

          (1)求不等式(2x﹣3)(x+1)<0的解集.

          (2)求不等式≥0的解集.

          【答案】(1)﹣1<x;(2)x≥3或x<﹣2.

          【解析】

          1)、(2)根據(jù)題意得出關(guān)于x的不等式組,求出x的取值范圍即可.

          解:(1)根據(jù)異號(hào)兩數(shù)相乘,積為負(fù)可得①或②,

          解①得不等式組無(wú)解;解②得,﹣1x;

          2)根據(jù)同號(hào)兩數(shù)相除,積為正可得①,②

          解①得,x≥3,解②得,x<﹣2

          故不等式組的解集為:x≥3x<﹣2

          故答案為:(1)﹣1x;(2x≥3x<﹣2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一只不透明的袋子中裝有1個(gè)藍(lán)球和2個(gè)紅球,這些球除顏色外都相同

          1攪勻后從中任意摸出1個(gè)球求摸到藍(lán)球的概率

          2攪勻后從中任意摸出1個(gè)球,記錄顏色后放回、攪勻,再?gòu)闹腥我饷?/span>1個(gè)球

          求至少有1次摸到紅球的概率

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1,在平面直角坐標(biāo)系xOy中,直線l1,l2都經(jīng)過(guò)點(diǎn)A(6,0),它們與y軸的正半軸分別相交于點(diǎn)B,C,且∠BAO=ACO=30

          (1)求直線l1,l2的函數(shù)表達(dá)式;

          (2)設(shè)P是第一象限內(nèi)直線l1上一點(diǎn),連接PC,有SACP=24M,N分別是直線l1,l2上的動(dòng)點(diǎn),連接CM,MN,MP,求CM+MN+NP的最小值;

          (3)如圖2,在(2)的條件下,將△ACP沿射線PA方向平移,記平移后的三角形為△ACP,在平移過(guò)程中,若以A,C'P為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)C的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】請(qǐng)?jiān)跈M線上填上合適的內(nèi)容,完成下面的證明:

          如圖,射線AH交折線ACGFEN于點(diǎn)B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求證:∠2=∠3.

          證明:∵∠A=∠1(已知)

          ∴AC∥GF(

          ∴( )(

          ∵∠C=∠F(已知)

          ∴∠F=∠G

          ∴( )(

          ∴( )(

          ∵BM平分∠CBD,EN平分∠FEH

          ∴∠2= ∠3=

          ∴∠2=∠3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖, 是⊙O的直徑,點(diǎn)的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,點(diǎn)上一點(diǎn),且, 的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn) 交⊙O于點(diǎn),連接.

          1)求證: 是⊙O的切線;

          2)當(dāng)時(shí),求的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:如果⊙C的半徑為r,C外一點(diǎn)P到⊙C的切線長(zhǎng)小于或等于2r,那么點(diǎn)P叫做⊙C離心點(diǎn)”.

          1)當(dāng)⊙O的半徑為1時(shí),

          ①在點(diǎn)P1 ),P20,-2),P3,0中,⊙O離心點(diǎn) ;

          ②點(diǎn)Pmn)在直線上,且點(diǎn)P是⊙O離心點(diǎn),求點(diǎn)P橫坐標(biāo)m的取值范圍;

          2C的圓心Cy軸上,半徑為2,直線x軸、y軸分別交于點(diǎn)AB. 如果線段AB上的所有點(diǎn)都是⊙C離心點(diǎn),請(qǐng)直接寫(xiě)出圓心C縱坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD和正方形CEFG邊長(zhǎng)分別為ab,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正確結(jié)論有( )

          A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】填寫(xiě)證明的理由:

          已知,如圖ABCD,EF、CG分別是∠ABC、∠ECD的角平分線.

          求證:EFCG

          證明:∵ABCD(已知)

          ∴∠AEC=∠ECD   

          EF平分∠AEC、CG平分∠ECD(已知)

          ∴∠1   ,∠2   (角平分線的定義)

          ∴∠1=∠2   

          EFCG   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,RtABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在ACBC邊上,CD兩點(diǎn)不重合,設(shè)CD的長(zhǎng)度為xABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示yx之間的函數(shù)關(guān)系的是(

          A. A B. B C. C D. D

          查看答案和解析>>

          同步練習(xí)冊(cè)答案