日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系中拋物線經(jīng)過原點,且與直線交于則、兩點.

          1)求直線和拋物線的解析式;

          2)點在拋物線上,解決下列問題:

          ①在直線下方的拋物線上求點,使得的面積等于20;

          ②連接,作軸于點,若相似,請直接寫出點的坐標.

          【答案】1,;(2)①的坐標為;②點的坐標為:

          【解析】

          1)把代入即可求出一次函數(shù)解析式,把、代入即可求出二次函數(shù)解析式;

          2如圖1,作軸,交于點,設,則,表示出PQ、AB的長,然后根據(jù)三角形的面積公式列式求解即可;

          ②先根據(jù)勾股定理及其逆定理求出,然后分當時和當時兩種情況求解即可.

          1)把代入,得

          ,

          ,

          直線解析式為,

          ∵拋物線經(jīng)過原點,

          c=0

          、代入,得

          ,

          得拋物線解析式為

          2如圖1,作軸,交于點

          ,則

          ,AB=6+4=10

          ,

          解得,,

          的坐標為;

          ,如圖2,

          由題意得:,,

          ,

          ,

          時,

          ,

          整理得

          解方程,得(舍去),,此時點坐標為

          解方程(舍去),,此時點坐標為

          時,,即,

          整理得,

          解方程,得(舍去),,此時點坐標

          解方程,得(舍去),,此時點坐標為

          綜上所述:點的坐標為:

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,菱形中,分別為上的點,且,連接并延長,與的延長線交于點,連接

          1)求證:四邊形是平行四邊形;

          2)連接,若,求的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知點在函數(shù)的圖象上,矩形的邊軸上,是對角線的中點,函數(shù)的圖象經(jīng)過兩點,點的橫坐標為,點的橫坐標為,解答下列問題:

          1)求反比例函數(shù)的解析式;

          2)求點的坐標(用表示);

          3)當時,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知O是△ABC的外接圓,AC是直徑,∠A30°,BC2,點DAB的中點,連接DO并延長交O于點P,過點PPFAC于點F

          1)求劣弧PC的長;(結(jié)果保留π

          2)求陰影部分的面積.(結(jié)果保留π).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:

          ①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)

          【答案】①②③④.

          【解析】

          試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

          EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,=,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

          考點:三角形綜合題.

          型】填空
          結(jié)束】
          19

          【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】我市在創(chuàng)建全國文明城市過程中,決定購買AB兩種樹苗對某路段道路進行綠化改造,已知購買A種樹苗5棵,B種樹苗3棵,需要840元;購買A種樹苗3棵,B種樹苗5棵,需要760元.

          1)求購買A、B兩種樹苗每棵各需多少元?

          2)考慮到綠化效果和資金周轉(zhuǎn),購進A種樹苗不能少于30棵,且用于購買這兩種樹苗的資金不能超過10000元,現(xiàn)需購進這兩種樹苗共100棵,怎樣購買所需資金最少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀下列內(nèi)容,并完成相關問題.

          小明定義了一種新的運算,取名為※(加乘)運算.按這種運算進行運算的算式舉例如下:

          ;;

          ;

          問題:

          1)請歸納※(加乘)運算的運算法則:

          兩數(shù)進行※(加乘)運算時,________.特別地,0和任何數(shù)進行※(加乘)運算,或任何數(shù)和0進行※(加乘)運算,________

          2)計算:.(括號的作用與它在有理數(shù)運算中的作用一致)

          3)我們知道加法有交換律和結(jié)合律,這兩種運算律在有理數(shù)的※(加乘)運算中還適用嗎?請任選一個運算律,判斷它在※(加乘)運算中是否適用,并舉例驗證.(舉一個例子即可)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在菱形中,,,點是這個菱形內(nèi)部或邊上的一點,若以點,為頂點的三角形是等腰三角形,則,,兩點不重合)兩點間的最短距離為( )

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,基燈塔AB建在陡峭的山坡上,該山坡的坡度i10.75.小明為了測得燈塔的高度,他首先測得BC20m,然后在C處水平向前走了34m到達一建筑物底部E處,他在該建筑物頂端F處測得燈塔頂端A的仰角為43°.若該建筑物EF20m,則燈塔AB的高度約為(精確到0.1m,參考數(shù)據(jù):sin43°0.68,cos43°0.73,tan43°0.93)(

          A.46.7mB.46.8mC.53.5mD.67.8m

          查看答案和解析>>

          同步練習冊答案