日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點O在坐標(biāo)原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.
          (1)若E為邊OA上的一個動點,是否存在一點E使△CDE的周長取得最小值?若存在,求點E的坐標(biāo)并證明;若不存在,請說明理由.
          (2)若E、F為邊OA上的兩個動點,且EF=2,當(dāng)四邊形CDEF的周長最小時,求點E、F的坐標(biāo).

          解:(1)如圖,作點D關(guān)于x軸的對稱點D',連接CD'與x軸交于點E,連接DE.
          若在邊OA上任取點E'(與點E不重合),連接CE'、DE'、D'E'.
          由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE,
          可知△CDE的周長最小.
          ∵在矩形OACB中,OA=3,OB=4,D為OB的中點,
          ∴BC=3,D'O=DO=2,D'B=6.
          ∵OE∥BC,
          ∴Rt△D'OE∽Rt△D'BC,


          ∴點E的坐標(biāo)為(1,0)

          (2)如圖,
          作點D關(guān)于x軸的對稱點D',在CB邊上截取CG=2,連接D'G與x軸交于點E,在EA上截取EF=2
          ∵GC∥EF,GC=EF,
          ∴四邊形GEFC為平行四邊形,有GE=CF.
          又DC、EF的長為定值,
          ∴此時得到的點E、F使四邊形CDEF的周長最小
          ∵OE∥BC,
          ∴Rt△D'OE∽Rt△D'BG,有


          ∴點E的坐標(biāo)為(,0),點F的坐標(biāo)為(,0)
          分析:(1)由于C、D是定點,則CD是定值,如果△CDE的周長最小,即DE+CE有最小值.為此,作點D關(guān)于x軸的對稱點D',當(dāng)點E在線段CD′上時,△CDE的周長最小;
          (2)由于DC、EF的長為定值,如果四邊形CDEF的周長最小,即DE+FC有最小值.為此,作點D關(guān)于x軸的對稱點D',在CB邊上截取CG=2,當(dāng)點E在線段D′G上時,四邊形CDEF的周長最。
          點評:此題主要考查軸對稱--最短路線問題,解決此類問題,一般都是運用軸對稱的性質(zhì),將求折線問題轉(zhuǎn)化為求線段問題,其說明最短的依據(jù)是三角形兩邊之和大于第三邊.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
          (1)求點B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊答案