日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,直線(xiàn)MN與直線(xiàn)AB、CD分別交于點(diǎn)E、F,1與∠2互補(bǔ).

          1)求證:ABCD;

          2)如圖2,AEF與∠EFC的角平分線(xiàn)相交于點(diǎn)P,直線(xiàn)EP與直線(xiàn)CD交于點(diǎn)G,過(guò)點(diǎn)GEG的垂線(xiàn),交直線(xiàn)MN于點(diǎn)H.求證:PFGH;

          3)如圖3,在(2)的條件下,連接PH,KGH上一點(diǎn),且∠PHK=HPK,作∠EPK的平分線(xiàn)交直線(xiàn)MN于點(diǎn)Q.問(wèn)∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出∠HPQ的度數(shù);若變化,請(qǐng)說(shuō)明理由.

          【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)HPQ的大小不會(huì)發(fā)生變化

          【解析】試題分析

          1)由題意可得∠1+∠2=180°,∠1+∠AEF=180°,從而可得∠2=∠AEF,由此可得AB∥CD;

          2)由本題的已知條件結(jié)合(1)中所得AB∥CD可證得PF⊥EG,結(jié)合GH⊥EG即可得到PF∥GH;

          3設(shè)∠KPH=α,由PFGH可得FPH=PHK,結(jié)合PHK=HPK可得FPH=KPH=α,這樣由PQ平分EPK,即可得到KPQ= 從而可得HPQ=45°+αα=45°,由此說(shuō)明HPQ的大小不會(huì)發(fā)生變化.

          試題解析

          1)如圖1∵∠1∠2互補(bǔ),

          ∴∠1+∠2=180°

          ∵∠1+∠AEF=180°,

          ∴∠2=∠AEF,

          ∴AB∥CD;

          2)如圖2,由(1)知,AB∥CD,

          ∴∠BEF+∠EFD=180°

          ∵∠BEF∠EFD的角平分線(xiàn)交于點(diǎn)P,

          ∴∠FEP+EFP=BEF+EFD=90°,

          ∴∠EPF=90°,即EG⊥PF

          ∵GH⊥EG,

          ∴PF∥GH

          3)如圖3,設(shè)∠KPH=α,

          ∵PF∥GH,

          ∴∠FPH=∠PHK,而∠PHK=∠HPK,

          ∴∠FPH=∠KPH=α,

          ∵PQ平分∠EPK

          ∴∠KPQ= ,

          ∴∠HPQ=45°+α﹣α=45°,

          ∠HPQ的大小不會(huì)發(fā)生變化.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是拋物線(xiàn)y=ax2+bx+c(a≠0),其頂點(diǎn)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論正確的是(

          ①若拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為(k,0),則-2<k<-1; ②c-a=n;

          ③若x<-m時(shí),yx的增大而增大,則m=-1;④若x<0時(shí),ax2+(b+2)x<0.

          A. ①②④ B. ①③④ C. ①② D. ①②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,用一段長(zhǎng)30米的籬笆圍成一個(gè)一邊靠墻(墻的長(zhǎng)度為20米)的矩形雞場(chǎng)ABCD,設(shè)BC邊長(zhǎng)為x米,雞場(chǎng)的面積為y平方米.

          (1)求yx的函數(shù)關(guān)系式;

          (2)寫(xiě)出其二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng);

          (3)寫(xiě)出自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】李明同學(xué)到文具商店為學(xué)校美術(shù)組的30名同學(xué)購(gòu)買(mǎi)鉛筆和橡皮,已知鉛筆每支m元,橡皮每塊n元,若給每名同學(xué)買(mǎi)2支鉛筆和3塊橡皮,則一共需付款__________________元.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第二次操作;;若在第n次操作后,剩下的矩形為正方形,則稱(chēng)原矩形為n階奇異矩形.

          1)如圖1,矩形ABCD中,若AB=3,BC=9,則稱(chēng)矩形ABCD  階奇異矩形.

          2)如圖2,矩形ABCD長(zhǎng)為7,寬為3,它是奇異矩形嗎?如果是,請(qǐng)寫(xiě)出它是幾階奇異矩形,并在圖中畫(huà)出裁剪線(xiàn);如果不是,請(qǐng)說(shuō)明理由.

          3)已知矩形ABCD的一邊長(zhǎng)為20,另一邊長(zhǎng)為aa20),且它是3階奇異矩形,請(qǐng)畫(huà)出矩形ABCD及裁剪線(xiàn)的示意圖,并在圖的下方直接寫(xiě)出a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列各式中,正確的是()

          A.9ab-3ab=6B.3a+4b= 7abC.x2y-2 y x2= -x2yD.a4+a6=a10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,將正方形對(duì)折后展開(kāi)(圖④是連續(xù)兩次對(duì)折后再展開(kāi)),再按圖示方法折疊,能夠得到一個(gè)直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).

          A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知AB是O的直徑,點(diǎn)C在O上,過(guò)點(diǎn)C的直線(xiàn)與AB的延長(zhǎng)線(xiàn)交于點(diǎn)P,AC=PC,∠COB=2∠PCB.

          (1)求證:PC是O的切線(xiàn);

          (2)求證: ;

          (3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案