日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,已知ABO的直徑,ACO的弦,過O點作OFABO于點D,交AC于點E,交BC的延長線于點F,點GEF的中點,連接CG

          (1)判斷CGO的位置關(guān)系,并說明理由;

          (2)求證:2OB2BCBF;

          (3)如圖2,當(dāng)∠DCE2F,CE3,DG2.5時,求DE的長.

          【答案】1CG與⊙O相切,理由見解析;(2)見解析;(3DE2

          【解析】

          1)連接CE,由AB是直徑知ECF是直角三角形,結(jié)合GEF中點知∠AEO=∠GEC=∠GCE,再由OAOC知∠OCA=∠OAC,根據(jù)OFAB可得∠OCA+GCE90°,即OCGC,據(jù)此即可得證;

          2)證ABC∽△FBO,結(jié)合AB2BO即可得;

          3)證ECD∽△EGC,根據(jù)CE3,DG2.5,解之可得.

          解:(1CG與⊙O相切,理由如下:

          如圖1,連接CE,

          AB是⊙O的直徑,

          ∴∠ACB=∠ACF90°,

          ∵點GEF的中點,

          GFGEGC,

          ∴∠AEO=∠GEC=∠GCE

          OAOC,

          ∴∠OCA=∠OAC

          OFAB,

          ∴∠OAC+AEO90°

          ∴∠OCA+GCE90°,即OCGC,

          CG與⊙O相切;

          2)∵∠AOE=∠FCE90°,∠AEO=∠FEC

          ∴∠OAE=∠F,

          又∵∠B=∠B,

          ∴△ABC∽△FBO,

          ,即BOABBCBF,

          AB2BO,

          2OB2BCBF;

          3)由(1)知GCGEGF,

          ∴∠F=∠GCF,

          ∴∠EGC2F

          又∵∠DCE2F,

          ∴∠EGC=∠DCE

          ∵∠DEC=∠CEG,

          ∴△ECD∽△EGC,

          ,

          CE3,DG2.5

          ,

          整理,得:DE2+2.5DE90

          解得:DE2DE=﹣4.5(舍),

          DE2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某游樂場新推出了一個極速飛車的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度.其中斜坡軌道BC的坡度(或坡比)為i12,BC12米,CD8米,∠D36°,(其中點A、B、C、D均在同一平面內(nèi))則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59

          A.5.6B.6.9C.11.4D.13.9

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某工地需要利用炸藥實施爆破,操作人員點燃導(dǎo)火線后,要在炸藥爆炸前跑到300米以外的安全區(qū)域,炸藥導(dǎo)火線的長度y(厘米)與燃燒的時間x(秒)之間的函數(shù)關(guān)系如圖所示.

          1)請寫出點B的實際意義,

          2)求yx之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

          3)問操作人員跑步的速度必須超過多少,才能保證安全.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面材料:

          觀察與思考:閱讀下列材料,并解決后面的問題.在銳角中,、的對邊分別是a、b、c,過AD(如圖),則,,即,,于是,即.同理有:,,所以.

          即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.

          1)如圖,中,,,則

          2)如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.

          3)在(2)的條件下,試求75°的正弦值.(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運(yùn)動到點C停止,點Q從點B出發(fā)沿BC運(yùn)動到點C停止,它們運(yùn)動的速度都是1cm/s.若點P、Q同時開始運(yùn)動,設(shè)運(yùn)動時間為t(s),△BPQ的面積為y(cm2),已知yt之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:當(dāng)0<t≤10時,△BPQ是等腰三角形;②SABE=48cm2;③14<t<22時,y=110﹣5t;④在運(yùn)動過程中,使得△ABP是等腰三角形的P點一共有3個;當(dāng)△BPQ△BEA相似時,t=14.5.其中正確結(jié)論的序號是( 。

          A. ①④⑤ B. ①②④ C. ①③④ D. ①③⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在等腰△ABC中,ABBC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF⊙O相切于點B,交AC的延長線于點F

          1)求證:DAC的中點;

          2)若AB12,sinCAE,求CF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直角三角形紙片ABC中,∠ACB=90°,AC=2,BC=4,點D在邊AB上,以CD為折痕將△CBD折疊得到△CPD,CP與邊AB交于點E,若△DEP為直角三角形,則BD的長是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,

          (1)求證:AD是⊙O的切線.

          (2)若BC=8,tanB=,求⊙O 的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某工程隊承接了60萬平方米的綠化工程,由于情況有變,……設(shè)原計劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是(

          A. 實際工作時每天的工作效率比原計劃提高了結(jié)果提前30天完成了這一任務(wù)

          B. 實際工作時每天的工作效率比原計劃提高了,結(jié)果延誤30天完成了這一任務(wù)

          C. 實際工作時每天的工作效率比原計劃降低了,結(jié)果延誤30天完成了這一任務(wù)

          D. 實際工作時每天的工作效率比原計劃降低了,結(jié)果提前30天完成了這一任務(wù)

          查看答案和解析>>

          同步練習(xí)冊答案