日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解答題 
          (1)如圖1,∠A=50°,∠BDC=70°,DE∥BC,交AB于點(diǎn)E,BD是△ABC的角平分線.求△BDE各內(nèi)角的度數(shù).
          (2)完成下列推理過程 
          已知:如圖2,AD⊥BC,EF⊥BC,∠1=∠2,求證:DG∥AB
          證明:AD⊥BC,EF⊥BC(已知)
          ∴∠EFB∠ADB=90°
          垂直的定義
          垂直的定義

          ∴EF∥AD
          ∴∠1=∠BAD
          兩直線平行,同位角相等
          兩直線平行,同位角相等

          又∠1=∠2(已知)
          ∠BAD
          ∠BAD
          =
          ∠2
          ∠2
          等量代換
          等量代換

          ∴DG∥AB.
          分析:(1)由∠BDC-∠A求出∠ABD的度數(shù),由BD為角平分線得到∠DBC的度數(shù),再由DE與BC平行,利用兩直線平行內(nèi)錯(cuò)角相等求出∠BDE的度數(shù),利用三角形的內(nèi)角和定理即可求出∠BED的度數(shù);
          (2)由AD垂直于BC,EF垂直于BC,利用垂直的定義得到一對(duì)直角相等,利用同位角相等兩直線平行得到EF與AD平行,利用兩直線平行同位角相等得到一對(duì)角相等,再由已知一對(duì)角相等,利用等量代換得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行即可得證.
          解答:解:(1)∵∠A=50°,∠BDC=70°,
          ∴∠ABD=∠BDC-∠A=20°,
          ∵BD是△ABC的角平分線,
          ∴∠DBC=∠ABD=20°,
          ∵DE∥BC,
          ∴∠BDE=∠DBC=20°,
          ∴∠BED=180°-∠EBD-∠EDB=140°;

          (2)∵AD⊥BC,EF⊥BC(已知)
          ∴∠EFB=∠ADB=90°(垂直定義)           
          ∴EF∥AD(同位角相等,兩直線平行)   
          ∴∠1=∠BAD(兩直線平行,同位角相等)      
          又∵∠1=∠2(已知)
          ∴∠2=∠BAD(等量代換)           
          ∴DG∥AB.
          故答案為:(2)垂直定義;兩直線平行,同位角相等;等量代換.
          點(diǎn)評(píng):此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          解答題
          ①已知:如圖,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求:AD的長.
          ②如圖,一個(gè)牧童在小河的南4km的A處牧馬,而他正位于他的小屋B的西8km北7km處,他想把他的馬牽到小河邊去飲水,然后回家.他要完成這件事情所走的最短路程是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀解答題:
          已知如圖①,銳角△ABC中,AB、AC邊上的高CE、BD相交于O點(diǎn).若∠A=n°,求∠BOC的度數(shù).
          解:∵CE、BD是高
          ∴∠BEO=90°,∠BDA=90°
          在△ABD中,∵∠ADB=90°,∠A=n°
          ∴∠ABD=90°-n°
          ∴∠BOC=∠BEO+∠ABD=90°+90°-n°=180°-n°
          即∠BOC的度數(shù)為(180-n)°
          (1)若將題中已知條件“銳角△ABC”改為“鈍角△ABC,且∠A為鈍角”,其它條件不變(圖②),請(qǐng)你求出∠BOC的度數(shù).
          (2)若將題中已知條件“銳角△ABC”改為“鈍角△ABC,且∠B為鈍角”,其它條件不變(圖③),請(qǐng)你求出∠BOC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          幾何解答題
          (1)如圖1,直線l1、l2分別與直線l3、l4相交,∠1=76°,∠2=104°,∠3=68°,求∠4的度數(shù).
          (2)如圖2,∠1+∠2=180.,∠3=∠B,試判斷∠AED與∠ACB的大小關(guān)系,并對(duì)此結(jié)論進(jìn)行證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          幾何解答題
          (1)如圖,延長線段AB到C,使BC=
          12
          AB,D為AC的中點(diǎn),DC=2,求AB的長.
          (2)如圖,將一副直角三角尺的直角頂點(diǎn)C疊放在一起.
          ①如圖1,若CE恰好是∠ACD的角平分線,請(qǐng)直接回答此時(shí)CD是否是∠ECB的角平分線?
          ②如圖2,若∠ECD=α,CD在∠BCE的內(nèi)部,請(qǐng)你猜想∠ACE與∠DCB是否相等?并簡述理由;
          ③在②的條件下,請(qǐng)問∠ECD與∠ACB的和是多少?并簡述理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案