日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,∠B是直角,P是三角形內(nèi)的一點(diǎn),已知PA=10,PB=6,∠APB=∠BPC=∠CPA,則PC的長(zhǎng)度是
          33
          33
          分析:根據(jù)直角三角形中兩直角邊的平方和等于斜邊的平方,即AB2+BC2=AC2,用PC表示BC,CA,根據(jù)勾股定理即可求得PC.
          解答:解:注意到已知條件,則∠APB=∠BPC=∠CPA=120°,在△APB、△BPC、△CPA中,由余弦定理,得
          AB2=PA2+PB2-2PA•PB•cos120°=102+62+60=196,
          BC2=PB2+PC2-2PB•PCcos120°=PC2+62+6PC,
          CA2=PC2+PA2-2PC•PAcos120°=PC2+102+10PC,
          由勾股定理,AB2+BC2=CA2,得
          196+(36+PC2+6PC)=PC2+100+10PC
          ∴4PC=132,PC=33,
          故答案為 33.
          點(diǎn)評(píng):本題考查了勾股定理的正確運(yùn)用,本題中用PC表示BC和CA,是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,在△ABC中,DE是AC的中垂線,AE=3cm,△ABD得周長(zhǎng)為13cm,則△ABC的周長(zhǎng)是
           
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,AD是中線,G是重心,
          AB
          =
          a
          ,
          AD
          =
          b
          ,那么
          BG
          =
           
          .(用
          a
          b
          表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          11、在△ABC中,D是邊AB上一點(diǎn),∠ACD=∠B,AB=9,AD=4,那么AC的長(zhǎng)為
          6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖在△ABC中,AD是BC邊上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,則∠C=( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問(wèn)題.
          探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC={90°}+
          1
          2
          ∠A,理由如下:
          ∵BO和CO分別是∠ABC和∠ACB的角平分線,
          ∴∠1=
          1
          2
          ∠ABC,∠2=
          1
          2
          ∠ACB
          ∴∠1+∠2=
          1
          2
          (∠ABC+∠ACB)=
          1
          2
          (180°-∠A)=90°-
          1
          2
          ∠A
          ∴∠BOC=180°-(∠1+∠2)=180°-(90°-
          1
          2
          ∠A)=90°+
          1
          2
          ∠A
          (1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.
          (2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(直接寫(xiě)出結(jié)論)
          (3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫(xiě)出結(jié)論)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案