日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點C的⊙O的切線,AD⊥EF于點D.
          (1)求證:∠BAC=∠CAD;
          (2)若∠B=30°,AB=12,求
          AC
          的長.
          分析:(1)連接OC,由EF為圓O的切線,根據(jù)切線性質(zhì)得到OC與EF垂直,又AD與EF垂直,得到AD與OC平行,根據(jù)兩直線平行得到內(nèi)錯角∠OCA=∠CAD,由OA=OC,根據(jù)“等邊對等角”得到∠OCA=∠OAC,等量代換得證;
          (2)由OA=OB,根據(jù)“等邊對等角”得到∠B=∠OCB=30°,又∠AOC為△BOC的外角,根據(jù)三角形外角性質(zhì)求出∠AOC的度數(shù),即為弧AC所對的圓心角的度數(shù),然后由直徑AB的長,求出半徑的長,利用弧長公式即可求出
          AC
          的長.
          解答:精英家教網(wǎng)(1)證明:連接OC,
          ∵EF是過點C的⊙O的切線.
          ∴OC⊥EF,又AD⊥EF,
          ∴OC∥AD,
          ∴∠OCA=∠CAD,
          又∵OA=OC,
          ∴∠OCA=∠BAC,
          ∴∠BAC=∠CAD;

          (2)解:∵OB=OC,∴∠B=∠OCB=30°,
          又∵∠AOC是△BOC的外角,
          ∴∠AOC=∠B+∠OCB=60°,
          ∵AB=12,
          ∴半徑OA=
          1
          2
          AB=6,
          AC
          的長l=
          60π•6
          180
          =2π.
          點評:此題考查了切線的性質(zhì),等腰三角形的性質(zhì),以及弧長公式.遇到直線與圓相切,連接圓心與切點,是常常連接的輔助線,然后構造直角三角形來解決問題.要求學生掌握切線的性質(zhì),三角形的外角性質(zhì)以及弧長公式l=
          nπr
          180
          (n為弧所對的圓心角度數(shù),r表示圓的半徑).
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC.
          求證:DC是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點,過點M作DM⊥AB,交弦AC于點E,交⊙O于點F,且DC=DE.
          (1)求證:DC是⊙O的切線;
          (2)如果DM=15,CE=10,cos∠AEM=
          513
          ,求⊙O半徑的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點P.求證:AC2=AE•AP.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點E是
          AD
          的中點,連接BE交AC于點G,BG的垂直平分線CF交BG于H交AB于F點.
          (1)求證:BC是⊙O的切線;
          (2)若AB=8,BC=6,求BE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點B的弦BD⊥OC交⊙O于點D,垂足為E.
          (1)求證:CD是⊙O的切線;
          (2)當BC=BD,且BD=12cm時,求圖中陰影部分的面積(結果不取近似值).

          查看答案和解析>>

          同步練習冊答案