日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知半徑為1的⊙軸交于A、B兩點,經(jīng)過原點的直線MN切⊙ 于點M,圓心的坐標(biāo)為(2,0).

          (1)求切線MN的函數(shù)解析式;

          (2)線段上是否存在一點,使得以P、O、A為頂點的三角形與相似?若存在,請求出所有符合條件的點的坐標(biāo);若不存在,請說明理由.

          (3)若將⊙沿著x軸的負方向以每秒1個單位的速度移動;同時將直線MN以每秒2個單位的速度向下平移,設(shè)運動時間為t(t>0),求t為何值時,直線MN再一次與⊙相切?(本小題保留3位有效數(shù)字)

           

          【答案】

          (1)

          (2),

          (3)0.896

          【解析】

          試題分析:(1)過點軸,垂足為 

          ∵MN是切線,為切點,

          中,

          中,,

          ∴點坐標(biāo)為 (2分)

          設(shè)切線MN的函數(shù)解析式為,由題意可知, 

          ∴切線MN的函數(shù)解析式為 (1分)

          (2)存在.               

          ①過點軸,與交于點.可得

          ,∴ (2分)

          ②過點,垂足為,過點作,垂足為

          可得

          中,,∴

          中,,

          (2分)

          ∴符合條件的點坐標(biāo)有, 

          (3)在Rt△OCD中,OC=;在Rt△中,

           ,得.(3分)

          考點:直角三角形的基本知識

          點評:直角三角形的基本知識的運用是本題的解題關(guān)鍵,其中勾股定理及其逆定理等知識是常考點

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知半徑為18cm的圓形紙片,如果要在這張紙片上裁剪出一個扇形作為圓錐的側(cè)面,一個圓作為圓錐的底面,試問該如何裁剪,能使圓錐的底面圓面積盡量大,并且扇形的弧長恰好與圓錐底面圓的周長相配套(即兩者長度相等),求出這時圓錐的表面積.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知半徑為5cm的⊙O是△ABC的外接圓,CD是AB邊上的高,AE是⊙O的直徑.若AC=6cm,BC=9cm.求CD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知半徑為1的⊙O1與x軸交于A,B兩點,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點.
          (1)求二次函數(shù)的解析式;
          (2)射線OM從y軸正半軸開始,繞點O順時針方向以每秒15°的速度旋轉(zhuǎn),幾秒后射線OM與⊙O1相切?(切點為M)
          (3)當(dāng)射線OM與⊙O1相切時,在射線OM上是否存在一點P,使得以P,O,A為頂點的三角形與△OO1M相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知半徑為1的⊙O1與x軸交于A,B兩點,OM為⊙O1的切線,切點為M,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點.
          (1)求二次函數(shù)的解析式.
          (2)求出圖中陰影部分的面積.
          (3)求切線OM的函數(shù)解析式.
          (4)線段OM上是否存在一點P,使得以P,O,A為頂點的三角形與△OO1M相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•徐州模擬)如圖,已知半徑為1的⊙O1與x軸交于A、B兩點,經(jīng)過原點的直線MN切⊙O1于點M,圓心O1的坐標(biāo)為(2,0).
          (1)求切線MN的函數(shù)解析式;
          (2)線段OM上是否存在一點P,使得以P、O、A為頂點的三角形與△OO1M相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
          (3)若將⊙O1沿著x軸的負方向以每秒1個單位的速度移動;同時將直線MN以每秒2個單位的速度向下平移,設(shè)運動時間為t(t>0),求t為何值時,直線MN再一次與⊙O1相切?(本小題保留3位有效數(shù)字)

          查看答案和解析>>

          同步練習(xí)冊答案