日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知在ABC中,∠BAC=,∠ABC=,∠BCA=,ABC的三條角平分線AD,BE,CF交于點(diǎn)O,過OABC三邊作垂線,垂足分別為PQ,H,如下圖所示。

          1)若=78°,=56°,=46°,求∠EOH的大;

          2)用,,表示∠EOH的表達(dá)式為∠EOH= ;(要求表達(dá)式最簡)

          3)若,∠EOH+DOP+FOQ=,判斷ABC的形狀并說明理由。

          【答案】116°;(2)∠EOH=+ -90°;(3ABC是直角三角形,理由見解析。

          【解析】

          1)由角平分線的性質(zhì)求出∠EBA,再根據(jù)三角形內(nèi)角和定理可知∠BEA,在RtOHE中可求得∠EOH的大小;

          根據(jù)(1)中過程可表示;

          由(2)同理可用,,表示∠DOP和∠FOQ,將∠EOH+DOP+FOQ=中的∠EOH,∠DOP和∠FOQ進(jìn)行等量代換,可得出,,間的關(guān)系,由此可判斷ABC的形狀.

          (1)BE平分∠ABC(已知) ABC=(已知)

          ∴∠EBA=ABC=(角平分線性質(zhì))

          ∵∠BAC=(已知)

          ∴∠BEA=180°-BAC-EBA=180°--(三角形內(nèi)角和180°)

          OHAC(已知)

          ∠OHE=90°(垂直的定義)

          ∴在RtOHE中,∠EOH=90°-OEH=90-BEA=90-(180°--)=16°

          (2) 由(1)知 EOH=+ -90°

          (3) 由(2)同理得∠DOP=+- 90° ,∠FOQ=+-90°

          EOH+DOP+FOQ=+ -90°++- 90°++-90°=

          解得α+β+γ=270°

          β+γ=180°-α(三角形內(nèi)角和180°

          解得α=90°

          ABC是直角三角形

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構(gòu)成四邊形ABCD

          1)求證:四邊形ABCD是菱形;

          2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】浠水縣商場某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

          銷售時(shí)段

          銷售數(shù)量

          銷售收入

          A種型號(hào)

          B種型號(hào)

          第一周

          3臺(tái)

          4臺(tái)

          1200

          第二周

          5臺(tái)

          6臺(tái)

          1900

          (進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入﹣進(jìn)貨成本)

          (1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

          (2)若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?

          (3)在(2)的條件下,商場銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤超過1850元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,∠DEF:∠EFH=32,∠1=B,∠2+3=180°,求∠DEF的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠ADC=130°,∠ABC=ADC,BF、DE分別平分∠ABC與∠ADC,交對邊于F、E,且∠ABF=AED,過EEHADADH

          1)在圖中作出線段BFEH(不要求尺規(guī)作圖);

          2)求∠AEH的大小。

          小亮同學(xué)根據(jù)條件進(jìn)行推理計(jì)算,得出結(jié)論,請你在括號(hào)內(nèi)注明理由。

          證明:∵BF、DE分別平分∠ABC與∠ADC,(已知)

          ∴∠ABF=ABC,∠CDE=ADC。(

          ∵∠ABC=ADC,(已知)

          ∴∠ABF=CDE。(等式的性質(zhì))

          ∵∠ABF=AED,(已知)

          ∴∠CDE=AED。(

          ABCD。(

          ∵∠ADC=130°(已知)

          ∴∠A=180°-ADC=50°(兩直線平行,同旁內(nèi)角互補(bǔ))

          EHADH(已知)

          ∴∠EHA=90°(垂直的定義)

          ∴在RtAEH中,∠AEH=90°-A =40°。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某花店準(zhǔn)備購進(jìn)甲、乙兩種花卉,若購進(jìn)甲種花卉20盆,乙種花卉50盆,需要900元;若購進(jìn)甲種花卉40盆,乙種花卉30盆,需要960元.

          (1)求購進(jìn)甲、乙兩種花卉每盆各需多少元?

          (2)該花店購進(jìn)甲,乙兩種花卉共100盆,甲種花卉每盆售價(jià)20元,乙種花齊每盆售價(jià)16元,現(xiàn)該花店把100盆花卉全部售出,若獲利超過480元,則至少購進(jìn)甲種花卉多少盆?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,DE平分∠ADCBC于點(diǎn)E,將一塊三角板的直角頂點(diǎn)放在E點(diǎn)處,并使它的一條直角邊過點(diǎn)A,另一條直角邊交CDM點(diǎn).若點(diǎn)MCD中點(diǎn),BC=6,則BE的長為(

          A. 2B. C. D. 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,ABO的直徑,ADO相切于點(diǎn)ADEO相切于點(diǎn)E,點(diǎn)CDE延長線上一點(diǎn),CE=CB

          (1)求證BCO的切線

          (2)AB=4,AD=1,求線段CE的長

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】銅陵某初中根據(jù)教育部在中小學(xué)生中每天開展體育活動(dòng)一小時(shí)的通知要求,共開設(shè)了排球、籃球、體操、羽毛球四項(xiàng)體育活動(dòng)課,全校每個(gè)學(xué)生都可根據(jù)自己的愛好任選其中一項(xiàng).體育老師在所有學(xué)生報(bào)名中,隨機(jī)抽取了部分學(xué)生的報(bào)名情況進(jìn)行了統(tǒng)計(jì),并將結(jié)果整理后繪制了如圖兩幅不完整的統(tǒng)計(jì)圖

          根據(jù)以上統(tǒng)計(jì)圖解答:

          1)體育老師隨機(jī)抽取了______名學(xué)生,并將條形圖補(bǔ)充完整;

          2)在扇形統(tǒng)計(jì)圖中,求“排球”部分所對應(yīng)的圓心角的度數(shù)并補(bǔ)全扇形統(tǒng)計(jì)圖;

          3)若學(xué)校一共有1600名學(xué)生,請估計(jì)該校報(bào)名參加“籃球”這一項(xiàng)目的人數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案