日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,長方形OBCDOB邊在x軸上,ODy軸上,把OBC沿OC折疊得到OCEOECD交于點(diǎn)F.

          (1)求證:OFCF;

          (2)若OD=4,OB=8,寫出OE所在直線的解析式.

          【答案】1)證明見解析;(2y=x.

          【解析】

          (1)根據(jù)平行的性質(zhì)和軸對稱的性質(zhì),可得∠BOC=FOC=FCO,即可證得;
          (2)可設(shè)FC=x=OF,則DF=8-x,則在直角△ODF中,根據(jù)勾股定理,可求出x,即可得出DF的長,從而可求出F點(diǎn)的坐標(biāo),再用待定系數(shù)法求出OE所在直線的解析式.

          1)證明:∵四邊形OBCD是長方形 ∴∠BOC=OCD

          OBC折疊成OCE ∴∠BOC=EOC

          ∴∠EOC=OCD OF=CF

          2)設(shè)FC=x,(8-x)2+42=x2 解得:x=5, DF=8-5=3, ∴點(diǎn)F的坐標(biāo)為;(3,4)

          設(shè)OE所在直線方程為y=kx,

          把(3,4)代入y=kx,得k=

          OE所在直線方程為y=x.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料并完成任務(wù):

          “最短路徑問題”是數(shù)學(xué)中一類具有挑戰(zhàn)性的問題.其實,數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:古希臘有一位久負(fù)盛名的學(xué)者,名叫海倫.他精通數(shù)學(xué)、物理,聰慧過人.有一天,一位將軍向他請教一個問題:如圖1,將軍從甲地騎馬出發(fā),要到河邊讓馬飲水,然后再回到乙地的馬棚,為使馬走的路程最短,應(yīng)該讓馬在什么地方飲水?

          海倫認(rèn)為以河邊為鏡面,畫出甲地的鏡像點(diǎn)(垂直河邊的等距離點(diǎn)),然后連接乙地和甲地的鏡像點(diǎn),會跟河邊相交一點(diǎn),這個點(diǎn)就是馬飲水的地方,馬走的路程最短(兩點(diǎn)之間直線距離最短).

          任務(wù):

          1)請你幫海倫在圖1的位置完成作圖,并標(biāo)出馬飲水的地點(diǎn)(畫出草圖即可);

          2)如圖2,的三個頂點(diǎn)的坐標(biāo)分別為,.請你在軸上找一點(diǎn),使得最小,并直接寫出點(diǎn)的坐標(biāo)(保留作圖痕跡);

          應(yīng)用:

          3)如圖3,圓柱形容器高為,底面周長為,在杯內(nèi)壁離杯底的點(diǎn)處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿處的點(diǎn)處,點(diǎn)的水平距離等于底面直徑,求螞蟻從外壁處到達(dá)內(nèi)壁處的最短距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(5,0)和點(diǎn)B0,4).

          1求直線AB所對應(yīng)的函數(shù)表達(dá)式;

          2設(shè)直線yx與直線AB相交于點(diǎn)C,求BOC的面積;

          3若將直線OC沿x軸向右平移,交y軸于點(diǎn)O,當(dāng)AB O為等腰三角形時,直接寫出點(diǎn)O的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知,,,,交于點(diǎn),則下列結(jié)論:①;②;③平分;④.其中正確的有____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某班男同學(xué)身高情況如下表,則其中數(shù)據(jù)167cm

          身高(cm)

          170

          169

          168

          167

          166

          165

          164

          163

          人數(shù)()

          1

          2

          5

          8

          6

          3

          3

          2

          A.是平均數(shù)B.是眾數(shù)但不是中位數(shù).

          C.是中位數(shù)但不是眾數(shù)D.是眾數(shù)也是中位數(shù)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一枚均勻的正方體骰子,六個面分別標(biāo)有數(shù)字:1,2,3,4,5,6.如果用小剛拋擲正方體骰子朝上的數(shù)字x,小強(qiáng)拋擲正方體骰子朝上的數(shù)字y來確定點(diǎn)P(x,y),那么他們各拋擲一次所確定的點(diǎn)P落在已知直線y=﹣2x+7圖象上的概率是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在讀數(shù)月活動中學(xué)校準(zhǔn)備購買一批課外讀物,為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類)。下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖。

          請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

          1)本次調(diào)查中,一共調(diào)查了 名同學(xué);

          2)條形統(tǒng)計圖中;

          3)扇形統(tǒng)計圖中,藝術(shù)類讀數(shù)所在扇形的圓心角是 度;

          4)學(xué)校計劃購買課外讀物8000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀數(shù)多少冊?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2019年是中華人民共和國成立70周年,某校將開展愛我中華,了解歷史為主題的知識競賽,八年級某老師為了解所任教的甲,乙兩班學(xué)生相關(guān)知識的掌握情況,對兩個班的學(xué)生進(jìn)行了中國歷史知識檢測,滿分為100.現(xiàn)從兩個班分別隨機(jī)抽取了20名學(xué)生的檢測成績進(jìn)行整理、描述和分析,下面給出了部分信息:(成績得分用x表示,共分為五組,A:0≤x80,B:80≤x85,C:85≤x90,D:90≤x95,E:95≤x≤100)

          甲班20名學(xué)生的成績?yōu)?/span>:

          82,8596,73,91,9987,9186,91

          87, 94,89, 96,9691,10093,94, 99

          乙班20名學(xué)生的成績在D組中的數(shù)據(jù)是:91,92,9292,92,93,94

          甲,乙兩班抽取的學(xué)生成績數(shù)據(jù)統(tǒng)計表:

          根據(jù)以上信息,解答下列問題:

          (1)請直接寫出上述統(tǒng)計表中a,b的值:a= ,b= ;

          (2)若甲,乙兩班總?cè)藬?shù)為120名,且都參加了此次知識檢測,若規(guī)定成績得分x≥95為優(yōu)秀,請估計此次檢測成績優(yōu)秀的學(xué)生人數(shù)是多少名?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在等腰Rt△ABC,BAC=90°,點(diǎn)EAC上(且不與點(diǎn)AC重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

          1求證AEF是等腰直角三角形;

          2如圖2,CED繞點(diǎn)C逆時針旋轉(zhuǎn)當(dāng)點(diǎn)E在線段BC上時,連接AE,求證AF=AE;

          3如圖3,CED繞點(diǎn)C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形CEDABC的下方時,AB=2,CE=2求線段AE的長

          查看答案和解析>>

          同步練習(xí)冊答案