日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A,與y軸交于點B,且OA=3,AB=6.點P從點O出發(fā)沿OA以每秒1個單位長的速度向點A勻速運動,到達點A后立刻以原來的速度沿AO返回;點Q從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線QB-BO-OP于點E.點P、Q同時出發(fā),當點Q到達點B時停止運動,點P也隨之停止.設點P、Q運動的時間是t秒(t>0).

          (1)求直線AB的解析式;

          (2)在點P從O向A運動的過程中(不包括A、O),求△APQ的面積S與t之間的函數(shù)關系式,并直接寫出t的取值范圍;

          (3)在點E從B向O運動的過程中,完成下面問題:

          四邊形QBED能否成為直角梯形?若能,請求出t的值;若不能,請說明理由;

           

          【答案】

          (1)直線AB的解析式為                          (1分)

          (2)

                                            (2分)

          )                                          (1分)

          (3)四邊形QBED能成為直角梯形.

          ①(Ⅰ)當DE∥QB時,

          ∵DE⊥PQ,

          ∴PQ⊥QB,四邊形QBED是直角梯形.

          此時∠AQP=90°.

          由(2)得AP=2AQ,即3-t=2t                                   (2分)

          解得t= 1;                                                    (1分)

          (Ⅱ)當PQ∥BO時,

          ∵DE⊥PQ,

          ∴DE⊥BO,四邊形QBED是直角梯形.

          此時∠APQ=90°.

          由(2)得AQ=2AP,即2(3-t)=t                               (1分)

          解得t= 2   

          【解析】(1)首先由在Rt△AOB中,OA=3,AB=5,求得OB的值,然后利用待定系數(shù)法即可求得二次函數(shù)的解析式;

          (2)過點Q作QF⊥AO于點F,由△AQF∽△ABO,根據(jù)相似三角形的對應邊成比例,借助于方程即可求得QF的長,然后即可求得△APQ的面積S與t之間的函數(shù)關系式;

          (3)分別從DE∥QB與PQ∥BO去分析,借助于相似三角形的性質,即可求得t的值;

           

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
          (1)求點B的坐標;
          (2)當∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
          (3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

          查看答案和解析>>

          同步練習冊答案