日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給出以下命題:①以三角形某兩邊中點為端點的線段是該三角形的一條中線;②三角形的一個外角大于任何一個內(nèi)角;③兩條直線被第三條直線所截,一對同旁內(nèi)角的平分線互相垂直;④若∠AOB+∠BOC=180°,則∠AOB與∠BOC的平分線互相垂直.

          其中錯誤命題的序號有________(多填、少填均不給分)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          2、如圖,在△ABE和△ACD中,給出以下四個論斷:
          (1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
          以其中三個論斷為題設(shè),填入下面的“已知”欄中,一個論斷為結(jié)論,填入下面的“求證”欄中,使之組成一個真命題,并寫出證明過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•漳州)(1)問題探究
          數(shù)學(xué)課上,李老師給出以下命題,要求加以證明.
          如圖1,在△ABC中,M為BC的中點,且MA=
          12
          BC,求證∠BAC=90°.
          同學(xué)們經(jīng)過思考、討論、交流,得到以下證明思路:
          思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…
          思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…
          思路三 以BC為直徑作圓,利用圓的知識…
          思路四…
          請選擇一種方法寫出完整的證明過程;
          (2)結(jié)論應(yīng)用
          李老師要求同學(xué)們很好地理解(1)中命題的條件和結(jié)論,并直接運用(1)命題的結(jié)論完成以下兩道題:
          ①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙0的切線;
          ②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(福建漳州卷)數(shù)學(xué)(解析版) 題型:解答題

          (1)問題探究

          數(shù)學(xué)課上,李老師給出以下命題,要求加以證明.

          如圖1,在△ABC中,M為BC的中點,且MA=BC,求證∠BAC=90°.

          同學(xué)們經(jīng)過思考、討論、交流,得到以下證明思路:

          思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…

          思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…

          思路三 以BC為直徑作圓,利用圓的知識…

          思路四…

          請選擇一種方法寫出完整的證明過程;

          (2)結(jié)論應(yīng)用

          李老師要求同學(xué)們很好地理解(1)中命題的條件和結(jié)論,并直接運用(1)命題的結(jié)論完成以下兩道題:

          ①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙O的切線;

          ②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

           

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年福建省漳州市中考數(shù)學(xué)試卷 (解析版) 題型:解答題

          (1)問題探究
          數(shù)學(xué)課上,李老師給出以下命題,要求加以證明.
          如圖1,在△ABC中,M為BC的中點,且MA=BC,求證∠BAC=90°.
          同學(xué)們經(jīng)過思考、討論、交流,得到以下證明思路:
          思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…
          思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…
          思路三 以BC為直徑作圓,利用圓的知識…
          思路四…
          請選擇一種方法寫出完整的證明過程;
          (2)結(jié)論應(yīng)用
          李老師要求同學(xué)們很好地理解(1)中命題的條件和結(jié)論,并直接運用(1)命題的結(jié)論完成以下兩道題:
          ①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙0的切線;
          ②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

          查看答案和解析>>

          同步練習(xí)冊答案