日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知AB為⊙O的直徑,弦CD⊥AB,垂足為H.求證:AH•AB=AC2
          略解析:
          (1) 連結CB,∵AB是⊙O的直徑,∴∠ACB=90°.
          而∠CAH=∠BAC,∴△CAH∽△BAC .
          , 即AH•AB="AC2" .
          (2) 連結FB,易證△AHE∽△AFB
          ∴ AE•AF=AH•AB
          ∴ AE•AF=AC
          (也可連結CF,證△AEC∽△ACF)
          (3) 結論AP•AQ=AC2成立 .
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知AB為⊙O的直徑,PA,PC是⊙O的切線,A,C為切點,∠BAC=30°.
          (Ⅰ)求∠P的大;
          (Ⅱ)若AB=2,求PA的長(結果保留根號).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          22、如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PE•EQ的值是(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖所示,已知AB為⊙O的直徑,C、D是直徑AB同側圓周上兩點,且弧CD=弧BD,過D作DE⊥AC于點E,求證:DE是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•沙市區(qū)一模)如圖,已知AB為⊙O的直徑,PA與⊙O相切與點A,線段OP與弦AC垂直并相交于點D,OP與⊙O相交于點E,連接BC.
          (1)求證:△PAD∽△ABC;
          (2)若PA=10,AD=6,求AB和PE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知AB為半圓的直徑,弦AD、BC相交于M,點E在AM上,且∠CEM=∠B,AB=1,則cos∠AMC的值等于線段( 。┑拈L.

          查看答案和解析>>

          同步練習冊答案