日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在邊長為的菱形中,對角線,點是直線上的動點,

          如圖,在邊長為的菱形中,對角線,點是直線上的動點,

          對角線的長是________,菱形的面積是________

          如圖,當點在對角線上運動時,的值是否發(fā)生變化?請說明理由;

          如圖,當點在對角線的延長線上時,的值是否發(fā)生變化?若不變請說明理由,若變化,請直接寫出之間的數(shù)量關系,不用明理由.

          【答案】624

          【解析】

          (1)連接ACBD相交于點G,根據(jù)菱形的對角線互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根據(jù)AC=2AG計算即可得解;再根據(jù)菱形的面積等于對角線乘積的一半列式計算即可得解;

          (2)連接AO,根據(jù)SABD=SABO+SADO列式計算即可得解;

          (3)連接AO,根據(jù)SABD=SABO-SADO列式整理即可得解.

          解:(1)如圖,連接AC與BD相交于點G,

          在菱形ABCD中,AC⊥BD,BG=BD=×8=4,

          由勾股定理得,AG=3,

          ∴AC=2AG=2×3=6,

          菱形ABCD的面積=ACBD=×6×8=24;

          故答案為:6;24;

          (2)如圖1,連接AO,

          則S△ABD=S△ABO+S△ADO,

          BDAG=ABOE+ADOF,

          ×8×3=×5OE+×5OF,

          解得OE+OF=4.8是定值,不變;

          (3)如圖2,連接AO,

          則S△ABD=S△ABO-S△ADO

          BDAG=ABOE-ADOF,

          ×8×3=×5OE-×5OF,

          解得OE-OF=4.8,是定值,不變,

          ∴OE+OF的值變化,OE、OF之間的數(shù)量關系為:OE-OF=4.8.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,使ΔABCΔADC成立的條件是(

          A.AB=AD,∠B=DB.AB=AD,∠ACB=ACD

          C.BC=DC,∠BAC=DACD.AB=AD,∠BAC=DAC

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】三條邊都相等的三角形叫做等邊三角形,它的三個角都是60°.△ABC是等邊三角形,點DBC所在直線上運動,連接AD,在AD所在直線的右側作∠DAE=60°,交△ABC的外角∠ACF的角平分線所在直線于點E

          1)如圖1,當點D在線段BC上時,請你猜想ADAE的大小關系,并給出證明;
          2)如圖2,當點D在線段BC的反向延長線上時,依據(jù)題意補全圖形,請問上述結論還成立嗎?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ACBECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點,且AD=2,AC=BC=.

          1)證明:ACE≌△BCD;

          2)求四邊形ADCE的面積;

          3)求ED的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】11·湖州)(本小題10分)

          如圖,已知EF分別是□ABCD的邊BC、AD上的點,且BE=DF。

          求證:四邊形AECF是平行四邊形;

          BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在長方形 ABCD 中,AB5,AD13,點 E BC 上一點,將ABE沿 AE 折疊,使點 B 落在長方形內(nèi)點 F 處,連接 DF DF12

          1)試說明:ADF 是直角三角形;

          2)求 BE 的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】菱形中,,點在邊上,點在邊上.

          (1)如圖,若的中點,,求證:

          (2)如圖,若,求證:是等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(-1,0)、B(4,0)、C(0,2)三點.

          (1)求該二次函數(shù)的解析式;

          (2)點D是該二次函數(shù)圖象上的一點,且滿足∠DBA=∠CAO(O是坐標原點),求點D的坐標;

          (3)點P是該二次函數(shù)圖象上位于一象限上的一動點,連接PA分別交BC,y軸與點E、F,若△PEB、△CEF的面積分別為S1、S2,求S1-S2的最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(1)操作與探究:如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊ADE點上,折痕的一端G點在邊BC上,BG=10.

          ①第一次折疊:當折痕的另一端點FAB邊上時,如圖1,求折痕GF的長;

          ②第二次折疊:當折痕的另一端點FAD邊上時,如圖2,證明四邊形BGEF為菱形,并求出折痕GF的長.

          (2)拓展延伸:通過操作探究發(fā)現(xiàn)在矩形紙片ABCD中,AB=5,AD=13.如圖3所示,折疊紙片,使點A落在BC邊上的A′處,折痕為PQ.當點A′BC邊上移動時,折痕的端點P,Q也隨之移動.若限定點P,Q分別在AB,AD邊上移動,則點A′BC邊上可移動的最大距離是   

          查看答案和解析>>

          同步練習冊答案