日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 用指定的方法解方程:
          (1)x2+8x-9=0(配方法)
          (2)4x2-3x=1(公式法)
          (3)3x(x-2)=4-2x(因式分解法)
          (4)2(x-3)2=x2-9
          分析:(1)先移項,然后在方程兩邊同時加上16,配方即可.
          (2)先移項變形,然后準確確定各個項的系數(shù),代入求根公式計算即可.
          (3)先移項變形,得3x(x-2)+2(x-2)=0,然后利用因式分解法解答.
          (4)先對方程的右邊進行因式分解,然后移項,進一步利用因式分解法解答.
          解答:解:(1)x2+8x-9=0,
          移項得:x2+8x=9,
          配方,x2+8x+16=9+16,
          即(x+4)2=25,
          解得:x1=1,x2=-9;

          (2)4x2-3x=1,
          移項得:4x2-3x-1=0,
          所以a=4,b=-3,c=-1,
          b2-4ac=25,
          x=
          25
          2×4
          ,
          解得:x1=1,x2=-
          1
          4
          ;

          (3)3x(x-2)=4-2x,
          先移項變形,得3x(x-2)+2(x-2)=0,
          因式分解得:(x-2)(3x+2)=0,
          解得:x1=2,x2=
          2
          3
          ;

          (4)2(x-3)2=x2-9,
          變形得,2(x-3)2=(x+3)(x-3),
          移項因式分解得,(x-3)(x-9)=0,
          解得:x1=3,x2=9.
          點評:本題考查了解一元二次方程的方法,當(dāng)把方程通過移項把等式的右邊化為0后,方程的左邊能因式分解時,一般情況下是把左邊的式子因式分解,再利用積為0的式子的特點解出方程的根.因式分解法是解一元二次方程的一種簡便方法,要會靈活運用.當(dāng)化簡后不能用分解因式的方法時,即可考慮用求根公式法,此法適用于任何一元二次方程.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          用指定的方法解方程
          (1)(x+2)2-25=0(直接開平方法)
          (2)x2+4x-5=0(配方法)
          (3)(x+2)2-10(x+2)+25=0(因式分解法)
          (4)2x2-7x+3=0(公式法)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          用指定的方法解方程:
          (1)x2-2x=0(因式分解法)             
          (2)x2-2x-3=0(用配方法)
          (3)2x2-9x+8=0(用公式法)         
          (4)(x-2)2=(2x+3)2(用合適的方法)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          用指定的方法解方程:
          ①x2+2x-35=0;(配方法解)
          ②4x(2x-1)=1-2x;(分解因式法解)
          ③5x+2=3x2(公式法解).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          用指定的方法解方程:
          (1)4(x-1)2-36=0(直接開平方法)
          (2)x2+2x-3=0(配方法)
          (3)2(x+1)-x(x+1)=0(因式分解法)
          (4)(x+1)(x-2)=4(公式法)

          查看答案和解析>>

          同步練習(xí)冊答案