日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】說理填空:如圖,點(diǎn)EDC的中點(diǎn),EC=EB,∠CDA=120°,DF//BE,且DF平分∠CDA,若△BCE的周長(zhǎng)為18cm,求DC的長(zhǎng).

          解: 因?yàn)?/span>DF平分∠CDA,(已知)

          所以∠FDC=_________.____________________

          因?yàn)椤?/span>CDA=120°,(已知)所以∠FDC=______°.

          因?yàn)?/span>DF//BE,(已知)

          所以∠FDC=_________=60°.____________________________________

          又因?yàn)?/span>EC=EB,(已知)

          所以△BCE為等邊三角形.________________________________________

          因?yàn)椤?/span>BCE的周長(zhǎng)為18cm,(已知) 所以BE=EC=BC=6 cm.

          因?yàn)辄c(diǎn)EDC的中點(diǎn),(已知) 所以DC=2EC=12 cm .

          【答案】ADC;角平分線意義;60;BEC;兩直線平行,同位角相等;有一個(gè)角是60°的等腰三角形是等邊三角形

          【解析】

          利用角平分線的性質(zhì)得出∠FDC的度數(shù),再利用平行線的性質(zhì)得出∠BEC的度數(shù),進(jìn)而得出△BCE為等邊三角形.

          DF平分∠CDA,(已知)
          ∴∠FDC=ADC.(角平分線意義)
          ∵∠CDA=120°,(已知)

          ∴∠FDC=60°
          DFBE,(已知)

          ∴∠FDC=BEC=60°.(兩直線平行,同位角相等)
          又∵EC=EB,(已知)

          ∴△BCE為等邊三角形.(有一個(gè)角是60°的等腰三角形是等邊三角形)
          ∵△BCE的周長(zhǎng)為18cm,(已知)

          BE=EC=BC=6cm
          ∵點(diǎn)EDC的中點(diǎn),(已知)

          DC=2EC=12cm

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi):

          ﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),

          (1)正數(shù)集合:{ …}

          (2)負(fù)數(shù)集合:{ …}

          (3)整數(shù)集合:{ …}

          (4)分?jǐn)?shù)集合:{ …}.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的圖象與軸有兩個(gè)公共點(diǎn).

          1)求的取值范圍,寫出當(dāng)取其范圍內(nèi)最大整數(shù)時(shí)拋物線的解析式;

          2)將(1)中所求得的拋物線記為

          ①求的頂點(diǎn)的坐標(biāo);

          ②若當(dāng)時(shí), 的取值范圍是,求的值;

          3)將平移得到拋物線,使的頂點(diǎn)落在以原點(diǎn)為圓心半徑為的圓上,求點(diǎn)兩點(diǎn)間的距離最大時(shí)的解析式,怎樣平移可以得到所求拋物線?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,將正方形置于平面直角坐標(biāo)系中,其中邊在軸上,其余各邊均與坐標(biāo)軸平行.直線沿軸的負(fù)方向以每秒1個(gè)單位的速度平移,在平移的過程中,該直線被正方形的邊所截得的線段長(zhǎng)為,平移的時(shí)間為(秒),的函數(shù)圖象如圖2所示,則圖1中的點(diǎn)的坐標(biāo)為__________,圖2中的值為__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱使等式 成立的一對(duì)有理數(shù),共生有理數(shù)對(duì),記為(,),如:數(shù)對(duì)(,),(,),都是共生有理數(shù)對(duì)

          1)數(shù)對(duì)(,),(,)中是共生有理數(shù)對(duì)嗎?說明理由.

          2)若()是共生有理數(shù)對(duì),則(,)是共生有理數(shù)對(duì)嗎?說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂獎(jiǎng).

          (1)從獲得美術(shù)獎(jiǎng)和音樂獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;

          (2)分別從獲得美術(shù)獎(jiǎng)、音樂獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,在平行四邊形ABCD中,點(diǎn)M,N分別在邊AB,DC上,作直線MN,分別交DABC的延長(zhǎng)線于點(diǎn)E、F,且AE=CF.

          (1) 求證:AEM≌△CFN.

          (2) 求證:四邊形BNDM是平行四邊形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知,若平分,平分,且,則___________°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖1,直線x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.

          圖1 圖2

          (1)求AC兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;

          (2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且SPCD=2SPAD ,求點(diǎn)P的坐標(biāo);

          (3)如圖2,另有一條直線y=-x與直線AC交于點(diǎn)M,N為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Qx軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案