日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:

          X

          ﹣1

          0

          1

          3

          y

          ﹣1

          3

          5

          3

          下列結(jié)論:
          ①ac<0;
          ②當(dāng)x>1時(shí),y的值隨x值的增大而減。
          ③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
          ④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
          其中正確的個(gè)數(shù)為( )
          A.4個(gè)
          B.3個(gè)
          C.2個(gè)
          D.1個(gè)

          【答案】B
          【解析】解:①由圖表中數(shù)據(jù)可得出:x=1時(shí),y=5,所以二次函數(shù)y=ax2+bx+c開口向下,a<0;又x=0時(shí),y=3,所以c=3>0,所以ac<0,故③正確;②∵二次函數(shù)y=ax2+bx+c開口向下,且對(duì)稱軸為x= =1.5,∴當(dāng)x≥1.5時(shí),y的值隨x值的增大而減小,故②錯(cuò)誤;③∵x=3時(shí),y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一個(gè)根,故③正確;④∵x=﹣1時(shí),ax2+bx+c=﹣1,∴x=﹣1時(shí),ax2+(b﹣1)x+c=0,∵x=3時(shí),ax2+(b﹣1)x+c=0,且函數(shù)有最大值,∴當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0,故④正確.

          所以答案是:B.

          【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小),還要掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系(二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c))的相關(guān)知識(shí)才是答題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】完成下列證明:如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.

          求證: DG∥BA.

          證明:∵AD⊥BC,EF⊥BC ( 已知 )

          ∴∠EFB=90°,∠ADB=90°(_______________________ )

          ∴∠EFB=∠ADB ( 等量代換 )

          ∴EF∥AD ( _________________________________ )

          ∴∠1=∠BAD (________________________________________)

          ∵∠1=∠2 ( 已知)

          (等量代換)

          ∴DG∥BA. (__________________________________)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(問題背景)

          如圖1,等腰ABC中,ABAC,∠BAC120°,作ADBC于點(diǎn)D,則DBC的中點(diǎn),∠BADBAC60°,.

          (問題應(yīng)用)

          如圖2,ABCADE都是等腰三角形,∠BAC=∠DAE120°,D、E、C三點(diǎn)共線,連接BD

          1)求證:ADB≌△AEC;

          2)直接寫出ADBD、CD之間的數(shù)量關(guān)系;

          如圖3,菱形ABCD中,∠ABC120°,在ABC內(nèi)部作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CECF

          1)判斷EFC的形狀,并給出證明.

          2)若AE5,CE2,求BF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(觀察)方程的解是的解是;

          的解是的解是

          (發(fā)現(xiàn))根據(jù)你的閱讀回答問題:

          (1)的解為_______;

          (2)關(guān)于的方程的解為_______(用含的代數(shù)式表示),并利用“方程的解的概念”驗(yàn)證.

          (類比)

          (3)關(guān)于的方程的解為_________(用含的代數(shù)式表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線AB,CD交于點(diǎn)OOB平分∠DOE,OF是∠BOC的角平分線.

          (1)說明:∠AOC=∠BOE;

          (2)若∠AOC46°,求∠EOF的度數(shù);

          (3)若∠EOF30°,求∠AOC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】轉(zhuǎn)化是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡(jiǎn)單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.

          (1)請(qǐng)你根據(jù)已經(jīng)學(xué)過的知識(shí)求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

          (2)若對(duì)圖(1)中星形截去一個(gè)角,如圖(2),請(qǐng)你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

          (3)若再對(duì)圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在⊙O中,半徑OA⊥OB,過點(diǎn)OA的中點(diǎn)C作FD∥OB交⊙O于D、F兩點(diǎn),且CD= ,以O(shè)為圓心,OC為半徑作 ,交OB于E點(diǎn).

          (1)求⊙O的半徑OA的長(zhǎng);
          (2)計(jì)算陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A2,3),點(diǎn)B﹣21),在x軸上存在點(diǎn)PA,B兩點(diǎn)的距離之和最小,則P點(diǎn)的坐標(biāo)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】周老師為鍛煉身體一直堅(jiān)持步行上下班。已知學(xué)校到周老師家總路程為2000米,一天,周老師下班后,以45/分的速度從學(xué)校往家走,走到離學(xué)校900米時(shí),正好遇到一個(gè)朋友,停下又聊了20分鐘,之后以110/分的速度走回了家.周老師回家過程中,離家的路程S(米)與所用時(shí)間t(分)之間的關(guān)系如圖所示.

          1)求a的值;

          2b= ,c= .

          3)求周老師從學(xué)校到家的平均速度。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案