日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,兩等圓⊙O1與⊙O2相交于A、B兩點,且⊙O1經(jīng)過⊙O2的圓心O2,求∠O1AB的度數(shù).

          答案:
          解析:

          連結(jié)O1B,O1O2,O2A,O2B.

          ∵⊙O1與⊙O2是等圓,⊙O1經(jīng)過⊙O2的圓心O2點,

          ∴O1A=O1B=O1O2=O2A=O2B,

          ∴四邊形O1BO2A為菱形,△AO1O2為等邊三角形,

          ∴∠O1AB=∠O1AO2=30°.


          提示:

          由題意可以知道O1A,O1B,O2A,O2B,O1O2均為半徑,故都相等.因此四邊形O1BO2A為菱形,△AO1O2為等邊三角形,則∠O1AB=30°.


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,兩等圓⊙O1、⊙O2相交于A、B兩點,且兩圓互相過圓心,過B作任一直線,分別交⊙O1、⊙O2于C、D兩點,連接AC、AD.
          (1)試猜想△ACD的形狀,并給出證明.
          (2)若已知條件中兩圓不一定互相過圓心,試猜想三角形的形狀是怎樣的?證明你的結(jié)論.
          (3)若⊙O1、⊙O2是兩個不相等的圓,半徑分別為R和r,那么(2)中的猜想還成立嗎精英家教網(wǎng)?若成立,給出證明;若不成立,那么AC和AD的長與兩圓半徑有什么關(guān)系?說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析 數(shù)學(xué) 九年級下 (配北師大課標(biāo)) 配北師大課標(biāo) 題型:044

          如圖,兩等圓⊙O1與⊙O2相交于A、B兩點,且⊙O1經(jīng)過點O2.求∠O1AB的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,兩等圓⊙O1、⊙O2相交于A、B兩點,且兩圓互相過圓心,過B作任一直線,分別交⊙O1、⊙O2于C、D兩點,連接AC、AD.
          (1)試猜想△ACD的形狀,并給出證明.
          (2)若已知條件中兩圓不一定互相過圓心,試猜想三角形的形狀是怎樣的?證明你的結(jié)論.
          (3)若⊙O1、⊙O2是兩個不相等的圓,半徑分別為R和r,那么(2)中的猜想還成立嗎作業(yè)寶?若成立,給出證明;若不成立,那么AC和AD的長與兩圓半徑有什么關(guān)系?說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2003年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,兩等圓⊙O1、⊙O2相交于A、B兩點,且兩圓互相過圓心,過B作任一直線,分別交⊙O1、⊙O2于C、D兩點,連接AC、AD.
          (1)試猜想△ACD的形狀,并給出證明.
          (2)若已知條件中兩圓不一定互相過圓心,試猜想三角形的形狀是怎樣的?證明你的結(jié)論.
          (3)若⊙O1、⊙O2是兩個不相等的圓,半徑分別為R和r,那么(2)中的猜想還成立嗎?若成立,給出證明;若不成立,那么AC和AD的長與兩圓半徑有什么關(guān)系?說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案