【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.
【答案】1或
【解析】
由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當(dāng)△EFG為等腰三角形時,①EF=GE=
時,于是得到DE=DG=
AD÷
=1,②GE=GF時,根據(jù)勾股定理得到DE=
.
∵四邊形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四邊形ABFE是平行四邊形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
當(dāng)△EFG為等腰三角形時,
當(dāng)EF=EG時,EG=,
如圖1,
過點D作DH⊥EG于H,
∴EH=EG=
,
在Rt△DEH中,DE==1,
GE=GF時,如圖2,
過點G作GQ⊥EF,
∴EQ=EF=
,在Rt△EQG中,∠QEG=30°,
∴EG=1,
過點D作DP⊥EG于P,
∴PE=EG=
,
同①的方法得,DE=,
當(dāng)EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,
故答案為:1或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,正比例函數(shù)的圖像與反比例函數(shù)
的圖像都經(jīng)過點A(2,m).
(1)求反比例函數(shù)的解析式;
(2)點B在軸的上,且OA=BA,反比例函數(shù)圖像上有一點C,且∠ABC=90°,求點C坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線L1:y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,在L1上任取一點P,過點P作直線l⊥x軸,垂足為D,將L1沿直線l翻折得到拋物線L2,交x軸于點M,N(點M在點N的左側(cè)).
(1)當(dāng)L1與L2重合時,求點P的坐標(biāo);
(2)當(dāng)點P與點B重合時,求此時L2的解析式;并直接寫出L1與L2中,y均隨x的增大而減小時的x的取值范圍;
(3)連接PM,PB,設(shè)點P(m,n),當(dāng)n= m時,求△PMB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小賢與小杰在探究某類二次函數(shù)問題時,經(jīng)歷了如下過程:
求解體驗
(1)已知拋物線經(jīng)過點(-1,0),則
= ,頂點坐標(biāo)為 ,該拋物線關(guān)于點(0,1)成中心對稱的拋物線的表達(dá)式是 .
抽象感悟
我們定義:對于拋物線,以
軸上的點
為中心,作該拋物線關(guān)于
點對稱的拋物線
,則我們又稱拋物線
為拋物線
的“衍生拋物線”,點
為“衍生中心”.
(2)已知拋物線關(guān)于點
的衍生拋物線為
,若這兩條拋物線有交點,求
的取值范圍.
問題解決
(3) 已知拋物線
①若拋物線的衍生拋物線為
,兩拋物線有兩個交點,且恰好是它們的頂點,求
的值及衍生中心的坐標(biāo);
②若拋物線關(guān)于點
的衍生拋物線為
,其頂點為
;關(guān)于點
的衍生拋物線為
,其頂點為
;…;關(guān)于點
的衍生拋物線為
,其頂點為
;…(
為
正整數(shù)).求的長(用含
的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對風(fēng)電塔桿進(jìn)行了測量,甲同學(xué)站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,
,
,
為
中點,
為
邊上一動點,連接
,以
為邊并在
的右側(cè)作等邊
,連接
,則
的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù),
,
是常數(shù),且
中的
與
的部分對應(yīng)值如下表所示,則下列結(jié)論中,正確的個數(shù)有( )
;
當(dāng)
時,
;
當(dāng)
時,
的值隨
值的增大而減小;
方程
有兩個不相等的實數(shù)根.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王的學(xué)校舉行了一次年級考試,考了若干門課程,后加試了一門,小王考得分,這時小王的平均成績比最初的平均成績提高了
分.后來又加試了一門,小王考得
分,這時小王的平均成績比最初的平均成績下降了
分,則小王共考了(含加試的兩門)________門課程,最后平均成績?yōu)?/span>________分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com