日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).

          (1)求a的值和拋物線的頂點(diǎn)坐標(biāo);
          (2)分別連接AC、BC.在x軸下方的拋物線上求一點(diǎn)M,使△AMC與△ABC的面積相等;
          (3)設(shè)N是拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),d=|AN﹣CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請(qǐng)簡(jiǎn)單說(shuō)明理由.

          (1)。拋物線的頂點(diǎn)坐標(biāo)為(﹣,)。
          (2)M點(diǎn)的坐標(biāo)是(﹣9,﹣4)。
          (3)在拋物線對(duì)稱(chēng)軸上存在一點(diǎn)N,能夠使d=|AN﹣CN|的值最大。理由見(jiàn)解析。

          解析分析:(1)先把點(diǎn)B的坐標(biāo)代入,可求得a的值,再利用配方法將一般式化為頂點(diǎn)式,即可求得拋物線的頂點(diǎn)坐標(biāo)。
          (2)先由拋物線的解析式,求出與x軸的交點(diǎn)A的坐標(biāo),與y軸的交點(diǎn)C的坐標(biāo),再由△AMC與△ABC的面積相等,得出這兩個(gè)三角形AC邊上的高相等,又由點(diǎn)B與點(diǎn)M都在AC的下方,得出BM∥AC,則點(diǎn)M既在過(guò)B點(diǎn)與AC平行的直線上,又在拋物線上,所以先運(yùn)用待定系數(shù)法求出直線AC的解析式為y=x+2,再設(shè)直線BM的解析式為y=x+n,將點(diǎn)B(3,0)代入,求出n的值,得到直線BM的解析式為,然后解方程組,即可求出點(diǎn)M的坐標(biāo)。
          (3)連接BC并延長(zhǎng),交拋物線的對(duì)稱(chēng)軸x=﹣于點(diǎn)N,連接AN,根據(jù)軸對(duì)稱(chēng)的性質(zhì)得出AN=BN,并且根據(jù)三角形三邊關(guān)系定理得出此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大.運(yùn)用待定系數(shù)法求出直線BC的解析式,再將x=﹣代入,求出y的值,得到點(diǎn)N的坐標(biāo),然后利用勾股定理求出d的最大值BC即可。
          解:(1)∵拋物線經(jīng)過(guò)點(diǎn)B(3,0),
          ,解得。
          。
          ,
          ∴拋物線的頂點(diǎn)坐標(biāo)為(﹣,)。
          (2)∵拋物線的對(duì)稱(chēng)軸為直線x=﹣,與x軸交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(3,0),
          ∴點(diǎn)A的坐標(biāo)為(﹣6,0)。
          又∵當(dāng)x=0時(shí),y=2,∴C點(diǎn)坐標(biāo)為(0,2)。
          設(shè)直線AC的解析式為y=kx+b,
          ,解得:。
          ∴直線AC的解析式為y=x+2。
          ∵SAMC=SABC,∴點(diǎn)B與點(diǎn)M到AC的距離相等。
          又∵點(diǎn)B與點(diǎn)M都在AC的下方,∴BM∥AC。
          設(shè)直線BM的解析式為y=x+n,將點(diǎn)B(3,0)代入,得×3+n=0,解得n=﹣1。
          ∴直線BM的解析式為
          ,解得。
          ∴M點(diǎn)的坐標(biāo)是(﹣9,﹣4)。
          (3)在拋物線對(duì)稱(chēng)軸上存在一點(diǎn)N,能夠使d=|AN﹣CN|的值最大。理由如下:
          ∵拋物線與x軸交于點(diǎn)A和點(diǎn)B,
          ∴點(diǎn)A和點(diǎn)B關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng)。
          連接BC并延長(zhǎng),交直線x=﹣于點(diǎn)N,連接AN,則AN=BN,此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大。

          設(shè)直線BC的解析式為y=mx+t,將B(3,0),C(0,2)兩點(diǎn)的坐標(biāo)代入,
          ,解得:。
          ∴直線BC的解析式為y=x+2。,
          當(dāng)x=﹣時(shí),y=-×(﹣)+2=3。
          ∴點(diǎn)N的坐標(biāo)為(﹣,3),d的最大值為。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:直線過(guò)拋物線的頂點(diǎn)P,如圖所示.

          (1)頂點(diǎn)P的坐標(biāo)是     
          (2)若直線y=ax+b經(jīng)過(guò)另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
          (3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對(duì)稱(chēng),求直線y=mx+n與拋物線的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(4,0)與點(diǎn)(﹣2,6).

          (1)求拋物線的解析式;
          (2)直線m與⊙C相切于點(diǎn)A,交y軸于點(diǎn)D,動(dòng)點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng),點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng).當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知拋物線y=a(x﹣3)2+2經(jīng)過(guò)點(diǎn)(1,﹣2).
          (1)求a的值;
          (2)若點(diǎn)A(m,y1)、B(n,y2)(m<n<3)都在該拋物線上,試比較y1與y2的大小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖①,若二次函數(shù)的圖象與x軸交于點(diǎn)A(-2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)的圖象的對(duì)稱(chēng)點(diǎn)為C。
          (1)求b、c的值;
          (2)證明:點(diǎn)C 在所求的二次函數(shù)的圖象上;
          (3)如圖②,過(guò)點(diǎn)B作DB⊥x軸交正比例函數(shù)的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)的圖象于點(diǎn)E,連結(jié)AD、CD。如果動(dòng)點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一個(gè)到達(dá)終點(diǎn)時(shí),另一個(gè)隨之停止運(yùn)動(dòng),連結(jié)PQ、QE、PE,設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使PE平分∠APQ,同時(shí)QE平分∠PQC,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,拋物線與直線交于C,D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為。點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交CD于點(diǎn)F.

          (1)求拋物線的解析式;
          (2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說(shuō)明理由;
          (3)若存在點(diǎn)P,使∠PCF=450,請(qǐng)直接寫(xiě)出相應(yīng)的點(diǎn)P的坐標(biāo)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          在平面直角坐標(biāo)系xOy中,拋物線)與y軸交于點(diǎn)A,其對(duì)稱(chēng)軸與x軸交于點(diǎn)B。

          (1)求點(diǎn)A,B的坐標(biāo);
          (2)設(shè)直線l與直線AB關(guān)于該拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),求直線l的解析式;
          (3)若該拋物線在這一段位于直線l的上方,并且在這一段位于直線AB的下方,求該拋物線的解析式。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

          某閉合電路中,電源的電壓為定值,電流I(A)與電阻R(Ω)成反比例.圖表示的是該電路中電流I與電阻R之間函數(shù)關(guān)系的圖象,則用電阻R表示電流I的函數(shù)解析式為( 。

          A.        B.        C.        D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

          已知點(diǎn)(-1,y1)、(2,y2)、(3,y3)在反比例函數(shù)的圖象上.下列結(jié)論中正確的是

          A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案