日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知Rt△ABC中,∠C=90°,BC=8 cm,AC=6 cm,CD是斜邊AB上的高,求CD:AB的值.
          分析:先用勾股定理求出斜邊AB的長度,再用面積求出斜邊上的高CD,然后代入計(jì)算即可求出CD:AB的值.
          解答:解:在Rt△ABC中,由勾股定理得:AB=
          AC2+BC2
          =
          62+82
          =10(cm),
          由面積公式得:S△ABC=
          1
          2
          AC•BC=
          1
          2
          AB•CD
          ∴CD=
          6×8
          10
          =
          24
          5
          (cm),
          ∴CD:AB=
          24
          5
          :10=
          12
          25
          點(diǎn)評:考查了勾股定理,線段的比,利用勾股定理和直角三角形的面積相結(jié)合,求解斜邊上的高是解直角三角形的重要題型之一,也是中考的熱點(diǎn).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
          (1)請以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個菱形和兩個等腰梯形.那么,構(gòu)成菱形的四個頂點(diǎn)是
          B,E,D,F(xiàn)
          E,D,C,G
          ;構(gòu)成等腰梯形的四個頂點(diǎn)是
          B,E,D,C
          E,D,G,F(xiàn)
          ;
          (2)請你各選擇其中一個圖形加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
          (1)求證:
          AB
          =
          AF
          ;
          (2)若BE•EF=32,AD=6,求BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點(diǎn),PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
          (1)求PA的長;
          (2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
          14
          14

          查看答案和解析>>

          同步練習(xí)冊答案