日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖點(diǎn)ORt△ABC斜邊AB上一點(diǎn),OA為半徑的OBC相切于點(diǎn)D,AC相交于點(diǎn)E,AB相交于點(diǎn)F,連接AD

          1求證AD平分BAC;

          2若點(diǎn)E為弧AD的中點(diǎn)探究線段BD,CD之間的數(shù)量關(guān)系,并證明你的結(jié)論;

          3若點(diǎn)E為弧AD的中點(diǎn),CD=求弧DF與線段BD,BF所圍成的陰影部分的面積

          【答案】1)答案見解析;(2BD= 2CD;(3

          【解析】試題分析:(1)由RtABC中,∠C=90°,OBCD,易證得ACOD繼而證得AD平分∠CAB

          (2)連接DE,OE.先四邊形OAED為菱形,再證明△OAE是等邊三角形,由等邊三角形的性質(zhì)得∠OAD=CAD=30°,從而AD=BD=2CD;

          (3)RtODB中,由勾股定理列方程求出OD的長,然后根據(jù)S陰影=SODBS扇形ODF計(jì)算即可.

          解:(1)證明:連接OD.則∠ODB=C=90°,

          ACOD,

          ∴∠CAD=ADO

          OA=OD

          ∴∠OAD=ADO

          ∴∠CAD=OAD,

          AD平分∠BAC

          (2)連接DE,OE

          E的中點(diǎn),

          =,

          AE=DE

          ∴∠CAD=ADE

          ∵∠CAD=OAD,

          ∴∠OAD=ADE

          DEOA

          ACOD,OA=OD

          ∴四邊形OAED為菱形

          AE=OA=OE

          ∴∠OAC=60°.

          ∵∠C=90°,CAD=OAD,

          ∴∠B=90°﹣OAC=30°,

          OAD=CAD=30°.

          ,B=OAD

          BD=AD=2CD

          (3)ACOD,OAC=60°,

          ∴∠DOB=OAC=60°.

          ∵∠ODB=90°,B=30°,

          OB=2OD

          CD=BD=2CD,

          BD=

          RtODB中,

          由勾股定理得,,

          解得 OD=±2(負(fù)值舍去).

          S陰影=SODB﹣S扇形ODF

          =

          = .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:在△ABC中,∠ACB=90°,CDABD,BE:AB=3:5,若CE=,cosACD=

          (1)求cosABC;

          (2)AC的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】觀察數(shù)表

          根據(jù)其中的規(guī)律,在數(shù)表中的方框內(nèi)由上到下的數(shù)分別是_____、_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標(biāo)系中的圖象可能是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】由幾個(gè)相同的邊長為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).

          (1)請?jiān)谙旅娣礁窦堉蟹謩e畫出這個(gè)向何體的主視圖和左視圖.

          (2)根據(jù)三視圖;這個(gè)組合幾何體的表面積為 _________ 個(gè)平方單位.(包括底面積)

          (3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個(gè)平方單位.(包括底面積)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】張師傅在鋪瓷磚時(shí)發(fā)現(xiàn),用8塊大小一樣的小長方形瓷磚恰好可以拼成一個(gè)大的長方形,如圖①.然后,他用這8塊瓷磚又拼出一個(gè)正方形,如圖②,中間恰好空出一個(gè)邊長為1的小正方形(陰影部分).

          1)請你根據(jù)圖①寫出小長方形的長與寬之比為 ;

          2)請你根據(jù)圖②列出方程,求出小長方形的長與寬.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,以△ABC的三邊為邊在BC同側(cè)分別作等邊三角形,即△ABD,△BCE,△ACF

          (1)四邊形ADEF__________四邊形;

          (2)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為矩形;

          (3)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為菱形;

          (4)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF不存在.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD,

          OEAB,

          ∴∠COE=CAD,EOD=ODA

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD

          ED的切線;

          (2)連接CD,交OEM

          RtODE中,

          OD=32,DE=2,

          OEAB

          ∴△COE∽△CAB,

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是邊長為1的正方形,E,FBD所在直線上的兩點(diǎn).若AE=EAF=135°,則以下結(jié)論正確的是(  )

          A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

          查看答案和解析>>

          同步練習(xí)冊答案