日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
          (1)求拋物線對應的二次函數(shù)解析式;
          (2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
          (3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

          解:(1)解方程x2-4x+3=0得:
          x=1或x=3,而OA<OB,
          則點A的坐標為(-1,0),點B的坐標為(3,0);
          ∵A、B關(guān)于拋物線對稱軸對稱,
          ∴△DAB是等腰三角形,而∠DAB=45°,
          ∴△DAB是等腰直角三角形,得D(1,-2);
          令拋物線對應的二次函數(shù)解析式為y=a(x-1)2-2,
          ∵拋物線過點A(-1,0),
          ∴0=4a-2,得a=
          故拋物線對應的二次函數(shù)解析式為y=(x-1)2-2(或?qū)懗蓎=x2-x-);

          (2)∵CA⊥AD,∠DAC=90°,
          又∵∠DAB=45°,
          ∴∠CAB=45°;
          令點C的坐標為(m,n),則有m+1=n,
          ∵點C在拋物線上,
          ∴n=(m-1)2-2;
          化簡得m2-4m-5=0
          解得m=5,m=-1(舍去),
          故點C的坐標為(5,6);

          (3)由(2)知AC=6,而AD=2,
          ∴DC=
          過A作AM⊥CD,
          又∵,
          ∴AM=
          又∵S△ADC=S△APD+S△APC
          ,
          d1+d2=
          即此時d1+d2的最大值為4
          分析:(1)通過解方程即可求得OA、OB的長,從而得到點A、B的坐標,由于A、B關(guān)于拋物線的對稱軸對稱,且∠DAB=45°,那么△DAB是等腰直角三角形,即可利用點A、B的坐標求得點D的坐標,然后根據(jù)待定系數(shù)法求得拋物線的解析式;
          (2)由于AC⊥AD,且∠DAB=45°,則∠CAB=45°,設(shè)出點C的橫坐標,那么其縱坐標應為m+1,然后將C點坐標代入拋物線的解析式中,即可求得點C的坐標;
          (3)易得AC、AD的長,由于△ACD是直角三角形,那么AC•AD=AP•d1+AP•d2,由此可得d1+d2=,過A作AM⊥CD于M,利用△ACD的面積可求得AM的長,在Rt△APM中,AP≥AM,故d1+d2,而AC、AD、AM的長都已求得,由此可確定d1+d2的最大值.
          點評:此題主要考查了等腰直角三角形的性質(zhì)、二次函數(shù)解析式的確定、函數(shù)圖象交點坐標的求法、三角形面積的計算方法以及不等式的應用等重要知識,涉及知識面廣,難度較大.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
          (1)求點B的坐標;
          (2)當∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
          (3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習冊答案