日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2003•河南)已知,如圖,在平面直角坐標系中,以BC為直徑的⊙M交x軸正半軸于點A、B,交y軸正半軸于點E、F,過點C作CD垂直y軸,垂足為點D,連接AM并延長交⊙M于點P,連接PE.
          (1)求證:∠FAO=∠EAM;
          (2)若二次函數(shù)y=-x2+px+q的圖象經(jīng)過點B、C、E,且以C為頂點,當點B的橫坐標等于2時,四邊形OECB的面積是,求這個二次函數(shù)的解析式.

          【答案】分析:(1)根據(jù)四邊形APEF是⊙M的內(nèi)接四邊形的性質(zhì)可知∠APE=∠AFO,利用EAM=90°-∠APE,∠FAO=90°-∠AFO得到∠EAM=∠FAO;
          (2)利用頂點公式可知C點的坐標,圖象過E點,得E點的坐標為(0,q),連接AC,OC,則AC⊥OB,CD⊥y軸,AO⊥OD,可證明四邊形OACD為矩形,得到DC=OA,S△OCB=OB•AC=×2×,S△OCE=OE•CD=q•=,所以p2+pq+4q=11,把點B(2,0)代入可得2p+q-4=0,聯(lián)立方程組解得p=1,q=2,所以過B、C、E三點的二次函數(shù)的解析式為y=-x2+x+2.
          解答:(1)證明:如圖,
          ∵四邊形APEF是⊙M的內(nèi)接四邊形
          ∴∠APE=∠AFO
          ∵AP為⊙M的直徑
          ∴∠EAM=90°-∠APE
          ∵∠FAO=90°-∠AFO
          ∴∠EAM=∠FAO(3分).

          (2)解:因為二次函數(shù)y=-x2+px+q的圖象的頂點為C點,
          所以得C點的坐標,
          ∵圖象過E點,
          ∴得E點的坐標為(0,q).(4分)
          連接AC,則AC⊥OB,∵CD⊥y軸,AO⊥OD,
          ∴四邊形OACD為矩形
          ∴DC=OA,連接OC,
          S△OCB=OB•AC=×2×S△OCE=OE•CD=q•=

          即p2+pq+4q=11(6分)
          ∵點B(2,0)在拋物線y=-x2+px+q上
          ∴2p+q-4=0,聯(lián)立
          解這個方程組,得(不合題意,舍去)
          ∴過B、C、E三點的二次函數(shù)的解析式為y=-x2+x+2.(9分)
          點評:本題考查二次函數(shù)的綜合應(yīng)用,其中涉及到的知識點圓內(nèi)接四邊形的性質(zhì),二次函數(shù)頂點坐標求法以及函數(shù)的交點的意義等,要熟練掌握才能靈活運用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2003•河南)已知:如圖,A、O、B在同一條直線上,∠AOC=
          12
          ∠BOC+30°,OE平分∠BOC,則∠BOE=
          50
          50
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2003•河南)已知m=
          1
          2+
          3
          ,n=
          1
          2-
          3
          ,求(1+
          2n2
          m2-n2
          )÷(1+
          2n
          m-n
          )
          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2003•河南)已知:如圖,點P、A分別是直線l上和直線l外的點.求作:⊙O,使⊙O切直線l于點P,且經(jīng)過點A(保留作圖痕跡,寫出作法)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2003年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2003•河南)已知,如圖,在平面直角坐標系中,以BC為直徑的⊙M交x軸正半軸于點A、B,交y軸正半軸于點E、F,過點C作CD垂直y軸,垂足為點D,連接AM并延長交⊙M于點P,連接PE.
          (1)求證:∠FAO=∠EAM;
          (2)若二次函數(shù)y=-x2+px+q的圖象經(jīng)過點B、C、E,且以C為頂點,當點B的橫坐標等于2時,四邊形OECB的面積是,求這個二次函數(shù)的解析式.

          查看答案和解析>>

          同步練習(xí)冊答案