【題目】如圖,將函數(shù)y=x2﹣2x(x≥0)的圖象沿y軸翻折得到一個新的圖象,前后兩個圖象其實就是函數(shù)y=x2﹣2|x|的圖象.
(1)觀察思考
函數(shù)圖象與x軸有 個交點,所以對應(yīng)的方程x2﹣2|x|=0有 個實數(shù)根;方程x2﹣2|x|=2有 個實數(shù)根;關(guān)于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是 ;
(2)拓展探究
①如圖2,將直線y=x+1向下平移b個單位,與y=x2﹣2|x|的圖象有三個交點,求b的值;
②如圖3,將直線y=kx(k>0)繞著原點旋轉(zhuǎn),與y=x2﹣2|x|的圖象交于A、B兩點(A左B右),直線x=1上有一點P,在直線y=kx(k>0)旋轉(zhuǎn)的過程中,是否存在某一時刻,△PAB是一個以AB為斜邊的等腰直角三角形(點P、A、B按順時針方向排列).若存在,請求出k值;若不存在,請說明理由.
