日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB∥CD,定點(diǎn)E,F(xiàn)分別在直線AB,CD上,在平行線AB、CD之間有一動(dòng)點(diǎn)P,滿足0°<∠EPF<180°.

          (1)試問∠AEP,∠EPF,∠PFC滿足怎樣的數(shù)量關(guān)系?

          解:由于點(diǎn)P是平行線AB、CD之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)P的位置進(jìn)行分類討論;如圖1,當(dāng)P點(diǎn)在EF的左側(cè)時(shí),∠AEP,∠EPF,∠PFC滿足數(shù)量關(guān)系為______________,如圖2,當(dāng)P點(diǎn)在EF的右側(cè)時(shí),∠AEP,∠EPF,∠PFC滿足數(shù)量關(guān)系為______________

          (2)如圖3,QE,QF分別平分∠PEB和∠PFD,且點(diǎn)P在EF左側(cè).

          ①若∠EPF=60°,則∠EQF=_______°.

          ②猜想∠EPF與∠EQF的數(shù)量關(guān)系,并說明理由.

          ③如圖4,若∠BEQ與∠DFQ的角平分線交于點(diǎn)Q1,∠BEQ1與∠DFQ1的角平分線交于點(diǎn)Q2,∠BEQ2與∠DFQ2的角平分線交于點(diǎn)Q3,此次類推,則∠EPF與∠EQ2018F滿足怎樣的數(shù)量關(guān)系?(直接寫出結(jié)果)

          【答案】(1)∠AEP+∠PFC=∠EPF,∠AEP+∠PFC+∠EPF=360°;

          (2)①150;

          ②∠EPF與∠EQF的數(shù)量關(guān)系為∠EPF+2∠EQF=360°,理由詳見解析;

          ③∠EPF+22019∠EQ2018F=360°.

          【解析】

          (1)如圖1,過點(diǎn)PPHAB,證得 ABPHCD,然后根據(jù)平行線的性質(zhì)證得結(jié)論,如圖2,過點(diǎn)PPHAB,證得ABPHCD ,然后根據(jù)平行線的性質(zhì)證得結(jié)論;

          (2)①如圖3,過點(diǎn)PPHAB,過點(diǎn)QQGAB,然后根據(jù)平行線的性質(zhì)得到∠EPF=∠AEP+∠CFP,∠EQF=∠BEQ+∠DFQ ,由∠EPF=60°,QE,QF分別平分∠PEB和∠PFD,即可求得結(jié)論;

          ②同①即可得結(jié)論;

          ③由(2)②知∠EPF+2∠EQF=360°,進(jìn)而EPF+22EQ1F=360°,

          EPF+23EQ2F=360°,由規(guī)律即可求得結(jié)論.

          (1)如圖1,過點(diǎn)PPHAB,

          ABCDPHAB,∴ABPHCD

          ∴∠AEP=∠EPH,∠PFC=∠FPH

          ∵∠EPF=∠EPH+∠FPH,

          ∴∠EPF=∠AEP+∠PFC

          如圖2,過點(diǎn)PPHAB,

          ABCD,PHAB,

          ABPHCD

          ∴∠AEP+∠EPH=180°,∠CFP+∠FPH=180°,

          ∵∠EPF=∠EPH+∠FPH,

          ∴∠AEP+∠PFC+∠EPF=360°.

          故答案為AEP+∠PFC=∠EPF,∠AEP+∠PFC+∠EPF=360°;

          (2)①如圖3,過點(diǎn)PPHAB,過點(diǎn)QQGAB

          ABCD,PHAB,

          ABPHCD,

          ∴∠AEP=∠EPH,∠PFC=∠FPH,

          ∵∠EPF=∠EPH+∠FPH,

          ∴∠EPF=∠AEP+∠PFC

          同理:EQF=∠BEQ+∠DFQ,

          ∵∠EPF=60°,

          ∴∠AEP+∠PFC=60°,

          ∴∠BEP+∠DEP=300°,

          QEQF分別平分PEBPFD,

          ∴∠BEQ+∠DFQ=150°,

          ∴∠EQF=150°;

          (2)②∠EPFEQF的數(shù)量關(guān)系為EPF+2∠EQF=360°,

          理由:

          (1)和(2)①可知EPF+∠BEP+∠DFP=360°,∠EQF=∠BEQ+∠DFQ,

          QEQF分別平分PEBPFD,

          ∴∠BEP=2∠BEQ,∠DFP=2∠DFQ

          ∴∠BEP+∠DFP=2(∠BEQ+∠DFQ)=2∠EQF,

          ∴∠EPF+2∠EQF=360°;

          (3)由(2)②EPF+2∠EQF=360°,

          同理可證:EPF+22EQ1F=360°,

          EPF+23EQ2F=360°,

          ……

          EPF+22019EQ2018F=360°,

          故答案為EPF+22019EQ2018F=360°.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】10分)國(guó)慶期間,為了滿足百姓的消費(fèi)需求,某商店計(jì)劃用170000元購(gòu)進(jìn)一批家電,這批家電的進(jìn)價(jià)和售價(jià)如表:

          若在現(xiàn)有資金允許的范圍內(nèi),購(gòu)買表中三類家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商店購(gòu)買冰箱x臺(tái).

          1)商店至多可以購(gòu)買冰箱多少臺(tái)?

          2)購(gòu)買冰箱多少臺(tái)時(shí),能使商店銷售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直徑為200cm的圓柱形油槽內(nèi)裝入一些油以后,截面如圖.若油面的寬AB=160cm,則油的最大深度為(
          A.40cm
          B.60cm
          C.80cm
          D.100cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】用同樣大小的小正方形紙片,按下圖的方式拼正方形

          規(guī)律:第①個(gè)圖形中有1個(gè)小正方形;

          第②個(gè)圖形比第①個(gè)圖形多3個(gè)小正方形;

          第③個(gè)圖形比第②個(gè)圖形多5個(gè)小正方形;……

          (n+1)個(gè)圖形比第n個(gè)圖形多________個(gè)小正方形;

          可發(fā)現(xiàn)以下結(jié)論:(1)1+3+5+……+(2n-1)= ____________;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一漁船由西往東航行,在A點(diǎn)測(cè)得海島C位于北偏東60°的方向,前進(jìn)20海里到達(dá)B點(diǎn),此時(shí),測(cè)得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解決農(nóng)民工子女入學(xué)難的問題,我市建立了一套進(jìn)城農(nóng)民工子女就學(xué)的保障機(jī)制,其中一項(xiàng)就是免交借讀費(fèi).據(jù)統(tǒng)計(jì),2004年秋季有名農(nóng)民工子女進(jìn)入主城區(qū)中小學(xué)學(xué)習(xí),預(yù)計(jì)2005年秋季進(jìn)入主城區(qū)中小學(xué)學(xué)習(xí)的農(nóng)民工子女比2004年有所增加,其中小學(xué)增加,中學(xué)增加,這樣,2005年秋季將新增名農(nóng)民工子女在主城區(qū)中小學(xué)學(xué)習(xí).

          (1)如果按小學(xué)每生每年收借讀費(fèi)元,中學(xué)每生每年收借讀費(fèi)元計(jì)算,求2005年新增加的名中小學(xué)學(xué)生共免收多少借讀費(fèi)”?

          (2)如果小學(xué)每增加名學(xué)生需配備名教師,中學(xué)每增加名學(xué)生需配備名教師,若按2005年秋季入學(xué)后,農(nóng)民工子女在主城區(qū)中小學(xué)就讀的學(xué)生增加的人數(shù)計(jì)算,一共需要配備多少名中小學(xué)教師?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算。
          (1)計(jì)算: +(﹣3)2﹣( ﹣1)0
          (2)化簡(jiǎn):(2+m)(2﹣m)+m(m﹣1).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC),折疊后頂點(diǎn)D恰好落在邊OC上的點(diǎn)F處,若點(diǎn)D的坐標(biāo)為(10,8),求點(diǎn)E的坐標(biāo)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在一只不透明的盒子里有背面完全相同,正面上分別寫有數(shù)字1、2、3、4的四張卡片,小馬從中隨機(jī)地抽取一張,把卡片上的數(shù)字作為被減數(shù);在另一只不透明的盒子里將形狀、大小完全相同,分別標(biāo)有數(shù)字1、2、3的三個(gè)小球混合后,小虎從中隨機(jī)地抽取一個(gè),把小球上的數(shù)字做為減數(shù),然后計(jì)算出這兩個(gè)數(shù)的差.
          (1)請(qǐng)你用畫樹狀圖或列表的方法,求這兩數(shù)差為0的概率;
          (2)小馬與小虎做游戲,規(guī)則是:若這兩數(shù)的差為非正數(shù),則小馬贏;否則小虎贏.你認(rèn)為該游戲公平嗎?請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案