如圖1,已知菱形ABCD的邊長(zhǎng)為2,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(﹣
,3),拋物線y=ax2+b(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移(如圖2),過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<)
①是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時(shí)針?lè)较蛐D(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時(shí),求t的取值范圍.(寫(xiě)出答案即可)
【考點(diǎn)】二次函數(shù)綜合題.
【專(zhuān)題】壓軸題.
【分析】(1)根據(jù)已知條件求出AB和CD的中點(diǎn)坐標(biāo),然后利用待定系數(shù)法求該二次函數(shù)的解析式;
(2)本問(wèn)是難點(diǎn)所在,需要認(rèn)真全面地分析解答:
①如圖2所示,△ADF與△DEF相似,包括三種情況,需要分類(lèi)討論:
(I)若∠ADF=90°時(shí),△ADF∽△DEF,求此時(shí)t的值;
(II)若∠DFA=90°時(shí),△DEF∽△FBA,利用相似三角形的對(duì)應(yīng)邊成比例可以求得相應(yīng)的t的值;
(III)∠DAF≠90°,此時(shí)t不存在;
②如圖3所示,畫(huà)出旋轉(zhuǎn)后的圖形,認(rèn)真分析滿足題意要求時(shí),需要具備什么樣的限制條件,然后根據(jù)限制條件列出不等式,求出t的取值范圍.確定限制條件是解題的關(guān)鍵.
【解答】解:(1)由題意得AB的中點(diǎn)坐標(biāo)為(﹣,0),CD的中點(diǎn)坐標(biāo)為(0,3),
分別代入y=ax2+b得
,
解得,,
∴y=﹣x2+3.
(2)①如圖2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC=2
∴sinC==
=
,∴∠C=60°,∠CBE=30°
∴EC=BC=
,DE=
又∵AD∥BC,∴∠ADC+∠C=180°
∴∠ADC=180°﹣60°=120°
要使△ADF與△DEF相似,則△ADF中必有一個(gè)角為直角.
(I)若∠ADF=90°
∠EDF=120°﹣90°=30°
在Rt△DEF中,DE=,求得EF=1,DF=2.
又∵E(t,3),F(xiàn)(t,﹣t2+3),∴EF=3﹣(﹣t2+3)=t2
∴t2=1,∵t>0,∴t=1
此時(shí)=2,
,
∴,
又∵∠ADF=∠DEF
∴△ADF∽△DEF
(II)若∠DFA=90°,
可證得△DEF∽△FBA,則
設(shè)EF=m,則FB=3﹣m
∴,即m2﹣3m+6=0,此方程無(wú)實(shí)數(shù)根.
∴此時(shí)t不存在;
(III)由題意得,∠DAF<∠DAB=60°
∴∠DAF≠90°,此時(shí)t不存在.
綜上所述,存在t=1,使△ADF與△DEF相似;
②如圖3所示,依題意作出旋轉(zhuǎn)后的三角形△FE′C′,過(guò)C′作MN⊥x軸,分別交拋物線、x軸于點(diǎn)M、點(diǎn)N.
觀察圖形可知,欲使△FE′C′落在指定區(qū)域內(nèi),必須滿足:EE′≤BE且MN≥C′N(xiāo).
∵F(t,3﹣t2),∴EF=3﹣(3﹣t2)=t2,∴EE′=2EF=2t2,
由EE′≤BE,得2t2≤3,解得t≤.
∵C′E′=CE=,∴C′點(diǎn)的橫坐標(biāo)為t﹣
,
∴MN=3﹣(t﹣)2,又C′N(xiāo)=BE′=BE﹣EE′=3﹣2t2,
由MN≥C′N(xiāo),得3﹣(t﹣)2≥3﹣2t2,解得t≥
或t≤﹣
﹣3(舍).
∴t的取值范圍為:.
【點(diǎn)評(píng)】本題是動(dòng)線型中考?jí)狠S題,綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、幾何變換(平移與旋轉(zhuǎn))、菱形的性質(zhì)、相似三角形的判定與性質(zhì)等重要知識(shí)點(diǎn),難度較大,對(duì)考生能力要求很高.本題難點(diǎn)在于第(2)問(wèn),(2)①中,需要結(jié)合△ADF與△DEF相似的三種情況,分別進(jìn)行討論,避免漏解;(2)②中,確定“限制條件”是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線與
軸,
軸分別交于
兩點(diǎn),把
沿著直線
翻折后得到
,則點(diǎn)
的坐標(biāo)是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開(kāi)始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的部分關(guān)系.那么從關(guān)閉進(jìn)水管起 分鐘該容器內(nèi)的水恰好放完.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某班為獎(jiǎng)勵(lì)在校運(yùn)會(huì)上取得較好成績(jī)的運(yùn)動(dòng)員,花了400元錢(qián)購(gòu)買(mǎi)甲、乙兩種獎(jiǎng)品共30件,其中甲種獎(jiǎng)品每件16元,乙種獎(jiǎng)品每件12元,求甲乙兩種獎(jiǎng)品各買(mǎi)多少件?該問(wèn)題中,若設(shè)購(gòu)買(mǎi)甲種獎(jiǎng)品x件,乙種獎(jiǎng)品y件,則方程組正確的是( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某公司向銀行申請(qǐng)了甲 、乙兩種貸款,共計(jì)68萬(wàn)元,每年需付出8.42萬(wàn)元利息。已知甲種貸款每年的利率為12%,乙種貸款每年的利率為13%,則該公司甲、乙兩種貸款的數(shù)額分別為_(kāi)________________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com