日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A、B的坐標(biāo)分別為A2,0),B0,﹣2),Py軸上B點(diǎn)下方一點(diǎn),以AP為邊作等腰直角三角形APM,其中PMPA,點(diǎn)M落在第四象限,過(guò)MMNy軸于N

          1)求直線AB的解析式;

          2)求證:PAO≌△MPN;

          3)若PBmm0),用含m的代數(shù)式表示點(diǎn)M的坐標(biāo);

          4)求直線MB的解析式.

          【答案】(1)yx2.(2)詳見(jiàn)解析;(3)(2+m,﹣4m);(4)y=﹣x2

          【解析】

          1)直線AB的解析式為ykx+bk≠0),利用待定系數(shù)法求函數(shù)的解析式即可;

          2)先證∠APO=∠PMN,用AASPAO≌△MPN

          3)由(2)中全等三角形的性質(zhì)得到OPNMOANP.根據(jù)PBm,用m表示出NMONOP+NP,根據(jù)點(diǎn)M在第四象限,表示出點(diǎn)M的坐標(biāo)即可.

          4)設(shè)直線MB的解析式為ynx2,根據(jù)點(diǎn)Mm+2,﹣m4).然后求得直線MB的解析式.

          1)解:設(shè)直線ABykx+bk≠0

          代入A20 ),B 0,﹣2 ),得

          ,

          解得,

          ∴直線AB的解析式為:yx2

          2)證明:作MNy軸于點(diǎn)N

          ∵△APM為等腰直角三角形,PMPA,

          ∴∠APM90°

          ∴∠OPA+NPM90°

          ∵∠NMP+NPM90°,

          ∴∠OPA=∠NMP

          PAOMPN

          ∴△PAO≌△MPNAAS).

          3)由(2)知,PAO≌△MPN,則OPNMOANP

          PBmm0),

          ON2+m+24+m MNOP2+m

          ∵點(diǎn)M在第四象限,

          ∴點(diǎn)M的坐標(biāo)為(2+m,﹣4m).

          4)設(shè)直線MB的解析式為ynx2n≠0).

          ∵點(diǎn)M2+m,﹣4m).

          在直線MB上,

          ∴﹣4mn2+m)﹣2

          整理,得(m+2n=﹣m2

          m0,

          m+2≠0

          解得 n=﹣1

          ∴直線MB的解析式為y=﹣x2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】格子乘法作為兩個(gè)數(shù)相乘的一種計(jì)算方法最早在15世紀(jì)由意大利數(shù)學(xué)家帕喬利提出,在明代的《算法統(tǒng)宗》一書(shū)中被稱為鋪地錦”.如圖1,計(jì)算,將乘數(shù)47計(jì)入上行,乘數(shù)51計(jì)入右行,然后以乘數(shù)47的每位數(shù)字乘以乘數(shù)51的每位數(shù)字,將結(jié)果計(jì)入相應(yīng)的格子中,最后按斜行加起來(lái),得2397.

          1)如圖2,用格子乘法表示,則的值為__________.

          2)如圖3,用格子乘法表示兩個(gè)兩位數(shù)相乘,則的值為___________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校計(jì)劃購(gòu)買一批籃球和足球,已知購(gòu)買2個(gè)籃球和1個(gè)足球共需320元,購(gòu)買3個(gè)籃球和2個(gè)足球共需540元.

          (1)求每個(gè)籃球和每個(gè)足球的售價(jià);

          (2)如果學(xué)校計(jì)劃購(gòu)買這兩種球共50個(gè),總費(fèi)用不超過(guò)5500元,那么最多可購(gòu)買多少個(gè)足球?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

          銷售時(shí)段

          銷售數(shù)量

          銷售收入

          A種型號(hào)

          B種型號(hào)

          第一周

          3臺(tái)

          4臺(tái)

          1200

          第二周

          5臺(tái)

          6臺(tái)

          1900

          (進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

          (1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

          (2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

          (3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接AC,DF

          (1)求證:四邊形ACDF是平行四邊形;

          (2)當(dāng)CF平分∠BCD時(shí),寫出BCCD的數(shù)量關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,直線lyxx軸交于點(diǎn)B1,以OB1為邊長(zhǎng)作等邊A1OB1,過(guò)點(diǎn)A1A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊A2A1B2,過(guò)點(diǎn)A2A1B2平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊A3A2B3,,則等邊A2017A2018B2018的邊長(zhǎng)是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我們都知道無(wú)限不循環(huán)小數(shù)是無(wú)理數(shù),而無(wú)限循環(huán)小數(shù)是可以化成分?jǐn)?shù)的,例如為循環(huán)節(jié))是可以化成分?jǐn)?shù)的,方法如下:

          -①得:,即,解得

          請(qǐng)你閱讀上面材料完成下列問(wèn)題:

          1化成分?jǐn)?shù)是 .

          2化成分?jǐn)?shù)是 .

          3)請(qǐng)你將化成分?jǐn)?shù)(寫出過(guò)程)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】完成下面的說(shuō)理過(guò)程:如圖,在四邊形中,,分別是,延長(zhǎng)線上的點(diǎn),連接,分別交,于點(diǎn),.已知,.對(duì)說(shuō)明理由.

          理由:(已知),

          (______),

          (等量代換).

          (______).

          (______).

          (______),

          (______).

          (______).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】程大位是我國(guó)明朝商人,珠算發(fā)明家,他60歲時(shí)完成的《直指算法綜宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法,書(shū)中有如下問(wèn)題:一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),小僧三人分一個(gè),大小和尚得幾丁,意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人,則小和尚有__________人.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案