日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】濟(jì)南大明湖畔的“超然樓”被稱作“江北第一樓”,某校數(shù)學(xué)社團(tuán)的同學(xué)對超然樓的高度進(jìn)行了測量,如圖,他們在A處仰望塔頂,測得仰角為30°,再往樓的方向前進(jìn)60m至B處,測得仰角為60°,若學(xué)生的身高忽略不計(jì), ≈1.7,結(jié)果精確到1m,則該樓的高度CD為(

          A.47m
          B.51m
          C.53m
          D.54m

          【答案】B
          【解析】解:根據(jù)題意得:∠A=30°,∠DBC=60°,DC⊥AC,
          ∴∠ADB=∠DBC﹣∠A=30°,
          ∴∠ADB=∠A=30°,
          ∴BD=AB=60m,
          ∴CD=BDsin60°=60× =30 ≈51(m).
          故選B.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解關(guān)于仰角俯角問題(仰角:視線在水平線上方的角;俯角:視線在水平線下方的角).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

          (1)求證:DE=DF;

          (2)若∠A=60°,BE=1,求△ABC的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了落實(shí)省新課改精神,我是各校都開設(shè)了“知識拓展類”、“體藝特長類”、“實(shí)踐活動(dòng)類”三類拓展性課程,某校為了解在周二第六節(jié)開設(shè)的“體藝特長類”中各門課程學(xué)生的參與情況,隨機(jī)調(diào)查了部分學(xué)生作為樣本進(jìn)行統(tǒng)計(jì),繪制了如圖所示的統(tǒng)計(jì)圖(部分信息未給出)
          根據(jù)圖中信息,解答下列問題:
          (1)求被調(diào)查學(xué)生的總?cè)藬?shù);
          (2)若該校有200名學(xué)生參加了“體藝特長類”中的各門課程,請估計(jì)參加棋類的學(xué)生人數(shù);
          (3)根據(jù)調(diào)查結(jié)果,請你給學(xué)校提一條合理化建議.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問題:

          (1)本次調(diào)查屬于調(diào)查,樣本容量是;
          (2)請補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
          (3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);
          (4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,為五角星圖案,圖、圖叫做蛻變的五角星.試回答以下問

          (1)在圖中,試證明∠A+∠B+∠C+∠D+∠E=180°;

          (2)對于圖或圖,還能得到同樣的結(jié)論嗎?若能,請?jiān)趫D或圖中任選其一證明你的發(fā)現(xiàn);若不能,試說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(5,0),菱形OABC的頂點(diǎn)B,C都在第一象限,tan∠AOC= ,將菱形繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)角α(0°<∠α<∠AOC)得到菱形FADE(點(diǎn)O的對應(yīng)點(diǎn)為點(diǎn)F),EF與OC交于點(diǎn)G,連結(jié)AG.

          (1)求點(diǎn)B的坐標(biāo).
          (2)當(dāng)OG=4時(shí),求AG的長.
          (3)求證:GA平分∠OGE.
          (4)連結(jié)BD并延長交x軸于點(diǎn)P,當(dāng)點(diǎn)P的坐標(biāo)為(12,0)時(shí),求點(diǎn)G的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(探究)如圖,在△ABC中,∠ABC的平分線與∠ACB的平分線相交于點(diǎn)P.

          (1)若∠ABC=50°,∠ACB=80°,則∠A=   度,∠P=   

          (2)∠A∠P的數(shù)量關(guān)系為   ,并說明理由.

          (應(yīng)用)如圖,在△ABC中,∠ABC的平分線與∠ACB的平分線相交于點(diǎn)P.∠ABC的外角平分線與∠ACB的外角平分線相交于點(diǎn)Q.直接寫出∠A∠Q的數(shù)量關(guān)系為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】尤秀同學(xué)遇到了這樣一個(gè)問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
          求證:a2+b2=5c2
          該同學(xué)仔細(xì)分析后,得到如下解題思路:
          先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證

          (1)請你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過程.
          (2)利用題中的結(jié)論,解答下列問題:在邊長為3的菱形ABCD中,O為對角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求MG2+MH2的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】端午節(jié)期間,揚(yáng)州某商場為了吸引顧客,開展有獎(jiǎng)促銷活動(dòng),設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,轉(zhuǎn)盤被分成4個(gè)面積相等的扇形,四個(gè)扇形區(qū)域里分別標(biāo)有“10元”、“20元”、“30元”、“40元”的字樣(如圖).規(guī)定:同一日內(nèi),顧客在本商場每消費(fèi)滿100元就可以轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,商場根據(jù)轉(zhuǎn)盤指針指向區(qū)域所標(biāo)金額返還相應(yīng)數(shù)額的購物券,某顧客當(dāng)天消費(fèi)240元,轉(zhuǎn)了兩次轉(zhuǎn)盤.
          (1)該顧客最少可得元購物券,最多可得元購物券;
          (2)請用畫樹狀圖或列表的方法,求該顧客所獲購物券金額不低于50元的概率.

          查看答案和解析>>

          同步練習(xí)冊答案