日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知如圖,在平面直角坐標(biāo)系中有四點,坐標(biāo)分別為A(-4,3)、B(4,3)、M(0,1)、Q(1,2),動點P在線段AB上,從點A出發(fā)向點B以每秒1個單位運(yùn)動.連接PM、PQ并延長分別交x軸于C、D兩點(如圖).
          (1)在點P移動的過程中,若點M、C、D、Q能圍成四邊形,則t的取值范圍是______,并寫出當(dāng)t=2時,點C的坐標(biāo)______.
          (2)在點P移動的過程中,△PMQ可能是軸對稱圖形嗎?若能,請求出符合條件的點P的坐標(biāo);若不能,請說明理由.
          (3)在點P移動的過程中,求四邊形MCDQ的面積S的范圍.
          【答案】分析:(1)如果設(shè)直線AB與y軸的交點為R的話,如果要使M、Q、D、C能構(gòu)成四邊形,那么P點必在線段AB上運(yùn)動,且不在直線QM上.由此可求出t的取值范圍;當(dāng)t=2時,PR=2,根據(jù)MR:OM=2:1,可得出OC=1.即C(1,0);
          (2)如果△PMQ是軸對稱圖形,那么△PMQ必為等腰三角形,應(yīng)有兩個符合條件的P點:
          ①P在MQ的垂直平分線上,可設(shè)出P點的坐標(biāo),然后用坐標(biāo)系兩點間的距離公式表示出PQ,PM,由于此時PQ=PM,據(jù)此可求出P的坐標(biāo);
          ②根據(jù)Q和M的坐標(biāo)可知:如果連接RQ,那么三角形MQR是等腰直角三角形,因此R點即(0,3)也符合條件.(當(dāng)PQ=QM時,在直線AB上,還有一點,但是那點在直線QM上,因此不合題意舍去);
          (3)本題只需求出S的最大值即可,分三種情況討論:
          ①當(dāng)0≤t<4時,過Q作QM⊥x軸于N,此時四邊形MCQD的面積可用梯形MQNO的面積+三角形QND的面積-三角形MOC的面積求得.由此可得出關(guān)于S,t的函數(shù)關(guān)系式;
          ②當(dāng)4≤t≤5時,其面積可用梯形MOQN的面積+三角形MCO的面積+三角形QND的面積求得;
          ③當(dāng)5<t≤8(t≠6)時,其面積可用四邊形三角形QNC的面積-梯形MONQ的面積-三角形MOD的面積求得;
          根據(jù)上述三種情況得出的函數(shù)關(guān)系式及各自的自變量取值范圍,可求出S的最大值,即可得出S的取值范圍.
          解答:解:(1)0≤t≤8,且t≠6;點C的坐標(biāo)為(1,0);


          (2)若△PMQ可能是軸對稱圖形,則△PMQ必為等腰三角形.
          ①當(dāng)PQ=PM時,設(shè)P點坐標(biāo)為P(a,3),則有:
          PQ==,
          易知MQ=
          =,
          解得a=2,a=0,
          當(dāng)a=2時,AP=4+2=6,即t=6不合題意,舍去.
          ∴P點坐標(biāo)為(0,3);
          ②當(dāng)PM=MQ時,設(shè)P點坐標(biāo)為P(b,3),則有:
          PQ=,PM=
          =,
          解得b=-1,
          ∴P點坐標(biāo)為(-1,3).
          綜上所述:點P的坐標(biāo)為(-1、3)、(0、3);

          (3)當(dāng)0≤t<4時,S=-t+,Smax=
          當(dāng)4≤t≤5時,S=-t+,Smax=;
          當(dāng)5<t≤8,S=t-,Smax=;
          ∴四邊形MCDQ的面積S的范圍是0<S≤
          點評:本題是點的運(yùn)動性問題,考查了圖形面積的求法、等腰三角形的判定、一次次函數(shù)的應(yīng)用等知識.綜合性強(qiáng),難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖,在平面直角坐標(biāo)系中有四點,坐標(biāo)分別為A(-4,3)、B(4,3)、M(0,1)、Q(1,2),動點P在線段AB上,從點A出發(fā)向點B以每秒1個單位運(yùn)動.連接PM、PQ并延長分別交x軸于C、D兩點(如圖).
          (1)在點P移動的過程中,若點M、C、D、Q能圍成四邊形,則t的取值范圍是
           
          ,并寫出當(dāng)t=2時,點C的坐標(biāo)
           

          (2)在點P移動的過程中,△PMQ可能是軸對稱圖形嗎?若能,請求出符合條件的點P的坐標(biāo);若不能,請說明理由.
          (3)在點P移動的過程中,求四邊形MCDQ的面積S的范圍.精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知如圖,在平面直角坐標(biāo)系中,點P在第一象限,⊙P與x軸相切于點Q,與y軸交于點M(0,2),N(0,8),求P點坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖,在平面直角坐標(biāo)系中,A(-4,0),B(8,0),C(0,8),E為△ABC中AC邊上一動點(不和A、C重合),以E為一頂點作矩形EFGH,使G、H點在x軸上,F(xiàn)點在BC上,EF交y軸于D點.并設(shè)EH長為x.
          (1)求直線AC解析式.
          (2)若矩形EFGH為正方形,求x值.
          (3)設(shè)EF長為y,試求y與x的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是矩形,點A、C的坐標(biāo)分別為A(20,0),C(0,8),點D是OA的中點,點P在BC邊上運(yùn)動,當(dāng)△ODP是腰長為10的等腰三角形時,點P的坐標(biāo)為
          (6,8)或(4,8)
          (6,8)或(4,8)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在平面直角坐標(biāo)系xoy中,直線x軸交于點A,與雙曲線在第一象限內(nèi)交于點BBC垂直x軸于點C,OC=2AO.求雙曲線的解析式.

           

          查看答案和解析>>

          同步練習(xí)冊答案