日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABCD中,EF為邊BC上兩點,BFCE,AEDF

          1)求證:△ABE≌△DCF;(2)求證:四邊形ABCD是矩形.

          【答案】1)見解析;(2)見解析.

          【解析】

          1)根據(jù)平行四邊形的性質(zhì)得到ABDC.根據(jù)全等三角形的判定定理即可得到結(jié)論.

          2)根據(jù)全等三角形的性質(zhì)得到∠B=∠C.根據(jù)平行四邊形的性質(zhì)得到ABCD.根據(jù)矩形的判定定理即可得到結(jié)論.

          1)證明:∵四邊形ABCD是平行四邊形,

          ABDC

          BFCE,

          BFEFCEEF,

          BECF

          在△ABE和△DCF中,

          ∴△ABE≌△DCFSSS);

          2)證明:∵△ABE≌△DCF,

          ∴∠B=∠C

          ∵四邊形ABCD是平行四邊形,

          ABCD

          ∴∠B+∠C180°.

          ∴∠B=∠C90°.

          ∵四邊形ABCD是平行四邊形,∠B90°,

          ∴四邊形ABCD是矩形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某超市要進一批雞蛋進行銷售,有、兩家農(nóng)場可供貨.為了比較兩家提供的雞蛋單個大小,超市分別對這兩家農(nóng)場的雞蛋進行抽樣檢測,通過分析數(shù)據(jù)確定雞蛋的供貨商.

          1)下列抽樣方式比較合理的是哪一種?請簡述原因.

          ①分別從、兩家提供的一箱雞蛋中拿出最上面的兩層(共40枚)雞蛋,并分別稱出其中每一個雞蛋的質(zhì)量.

          ②分別從、兩家提供的一箱雞蛋中每一層隨機抽4枚(共40枚)雞蛋,并分別稱出其中每個雞蛋的質(zhì)量.

          2)在用合理的方法抽出兩家提供的雞蛋各40枚后,分別稱出每個雞蛋的質(zhì)量(單位:),結(jié)果如表所示(數(shù)據(jù)包括左端點不包括右端點).

          4547

          4749

          4951

          5153

          5355

          農(nóng)場雞蛋

          2

          8

          15

          10

          5

          農(nóng)場雞蛋

          4

          6

          12

          14

          4

          ①如果從這兩家農(nóng)場提供的雞蛋中隨機拿一個,分別估計兩家雞蛋質(zhì)量在(單位:)范圍內(nèi)的概率(數(shù)據(jù)包括左端點不包括右端點);

          ②如果你是超市經(jīng)營者,試通過數(shù)據(jù)分析確定選擇哪家農(nóng)場提供的雞蛋.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

          托勒密定理:

          托勒密(Ptolemy)(公元90年~公元168年),希臘著名的天文學(xué)家,他的要著作《天文學(xué)大成》被后人稱為偉大的數(shù)學(xué)書,托勒密有時把它叫作《數(shù)學(xué)文集》,托勒密從書中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.

          托勒密定理:

          圓內(nèi)接四邊形中,兩條對角線的乘積等于兩組對邊乘積之和.

          已知:如圖1,四邊形ABCD內(nèi)接于⊙O,

          求證:ABCD+BCADACBD

          下面是該結(jié)論的證明過程:

          證明:如圖2,作∠BAE=∠CAD,交BD于點E

          ∴∠ABE=∠ACD

          ∴△ABE∽△ACD

          ABCDACBE

          ∴∠ACB=∠ADE(依據(jù)1

          ∵∠BAE=∠CAD

          ∴∠BAE+EAC=∠CAD+EAC

          即∠BAC=∠EAD

          ∴△ABC∽△AED(依據(jù)2

          ADBCACED

          ABCD+ADBCACBE+ED

          ABCD+ADBCACBD

          任務(wù):(1)上述證明過程中的依據(jù)1”、依據(jù)2”分別是指什么?

          2)當(dāng)圓內(nèi)接四邊形ABCD是矩形時,托勒密定理就是我們非常熟知的一個定理:   

          (請寫出)

          3)如圖3,四邊形ABCD內(nèi)接于⊙OAB3,AD5,∠BAD60°,點C的中點,求AC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形中,連接上一點,使得連接于點,作的延長線于點

          1)求證:

          2)若的長.

          3)在(2)的條件下,將沿著對折得到的對應(yīng)點為點,連接試求的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

          于點A(1,4)、點B(-4,n).

          (1)求一次函數(shù)和反比例函數(shù)的解析式;

          (2)求△OAB的面積;

          (3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一張半徑為的圓形紙片,點為圓心,將該圓形紙片沿直線折疊,直線兩點.

          1)若折疊后的圓弧恰好經(jīng)過點,利用直尺和圓規(guī)在圖中作出滿足條件的一條直線(不寫作法,保留作圖痕跡),并求此時線段的長度.

          2)已知一點,

          ①若折疊后的圓弧經(jīng)過點,則線段長度的取值范圍是________

          ②若折疊后的圓弧與直線相切于點,則線段的長度為_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,點E在對角線AC上,點F在邊CD上,連接BEEF.若∠EFC90°+CBE,BE7,EF10.則點DEF的距離為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點A,點C在反比例函數(shù)yk0x0)的圖象上,ABx軸于點BOCAB于點D,若CDOD,則AODBCD的面積比為__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面的材料:

          如果函數(shù) yfx)滿足:對于自變量 x 的取值范圍內(nèi)的任意 x1,x2,

          1)若 x1x2,都有 fx1)<fx2),則稱 fx)是增函數(shù);

          2)若 x1x2,都有 fx1)>fx2),則稱 fx)是減函數(shù).

          例題:證明函數(shù)fx)= x0)是減函數(shù).

          證明:設(shè) 0x1x2,

          fx1)﹣fx2)=

          0x1x2,

          x2x10x1x20

          0.即 fx1)﹣fx2)>0

          fx1)>fx2).

          ∴函數(shù) fx= x0)是減函數(shù).

          根據(jù)以上材料,解答下面的問題:

          已知函數(shù)

          f(﹣1)= +(﹣2)=-1f(﹣2)= +(﹣4)=

          1)計算:f(﹣3)= ,f(﹣4)=

          2)猜想:函數(shù) 函數(shù)(填“增”或“減”);

          3)請仿照例題證明你的猜想.

          查看答案和解析>>

          同步練習(xí)冊答案