日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 11.某種家電每臺(tái)的成本為1440元,原定價(jià)為x元,銷售旺季過后,商店按原定價(jià)的8折出售,打折后每臺(tái)售價(jià)為0.8x元,銷售一臺(tái)仍可獲利潤0.8x-1440元(成本+利潤=出售價(jià))

          分析 根據(jù)某種家電每臺(tái)的成本為1440元,原定價(jià)為x元,銷售旺季過后,商店按原定價(jià)的8折出售,可以求得打折后每臺(tái)售價(jià)和銷售一臺(tái)可獲得的利潤.

          解答 解:∵某種家電每臺(tái)的成本為1440元,原定價(jià)為x元,銷售旺季過后,商店按原定價(jià)的8折出售,
          ∴打折后每臺(tái)售價(jià)為:0.8x元,銷售一臺(tái)仍可獲利潤為:(0.8x-1440)元,
          故答案為:0.8x,0.8x-1440.

          點(diǎn)評(píng) 本題考查列代數(shù)式,解題的關(guān)鍵是明確題意.列出符合要求的代數(shù)式,知道利潤就是銷售價(jià)格與成本的差值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          1.求數(shù)據(jù)0.1、0.2、0.3、0.4、0.5的平均數(shù)與方差.(用兩種方法)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          2.已知x-1=$\sqrt{2}$,求x2-2x-1的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          19.若a、b是方程x2-4x+1=0的兩個(gè)根,c是方程x2-9=0的正根,問以a、b、c為邊的三角形是否存在?若存在,請(qǐng)加以證明;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          6.若m24=(m3x=(my4,則x=8.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          4.如圖1,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A、B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的距離稱為碟高.

          (1)拋物線y=$\frac{1}{2}$x2對(duì)應(yīng)的碟寬為4;拋物線y=4x2對(duì)應(yīng)的碟寬為$\frac{1}{2}$;拋物線y=ax2(a>0)對(duì)應(yīng)的碟寬為$\frac{2}{a}$;拋物線y=a(x-2)2+3(a>0)對(duì)應(yīng)的碟寬$\frac{2}{a}$;
          (2)若拋物線y=ax2-4ax-$\frac{5}{3}$(a>0)對(duì)應(yīng)的碟寬為6,且在x軸上,求a的值;
          (3)將拋物線yn=anx2+bnx+cn(an>0)的對(duì)應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3,…),定義F1,F(xiàn)2,…..Fn為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn-1的相似比為$\frac{1}{2}$,且Fn的碟頂是Fn-1的碟寬的中點(diǎn),現(xiàn)在將(2)中求得的拋物線記為y1,其對(duì)應(yīng)的準(zhǔn)蝶形記為F1
          ①求拋物線y2的表達(dá)式;
          ②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn.則hn=$\frac{3}{2n-1}$,F(xiàn)n的碟寬右端點(diǎn)橫坐標(biāo)為2+$\frac{3}{2n-1}$;F1,F(xiàn)2,….Fn的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫出該直線的表達(dá)式;若不是,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          11.已知拋物線L:y=ax2+bx+c(b2-4ac>0c≠0)分別交x軸于點(diǎn)A、B,交y軸于點(diǎn)C,則稱△ABC為拋物線L的內(nèi)接三角形,拋物線L稱為△ABC的外接拋物線.
          (1)如圖①,拋物線y=-x2-3x+4的內(nèi)接△ABC,求△ABC的面積.
          (2)若拋物L(fēng)的內(nèi)接△ABC的面積為10,且A(-4,0),B(1,0),C(0,c),求拋物線L的解析式.
          (3)如圖②,若拋物L(fēng):y=-2x2-4x+c(c>0)上有一點(diǎn)P(點(diǎn)P可以和點(diǎn)C 重合),且S△PAB=mS△ABC,請(qǐng)直接寫出當(dāng)c,m滿足什么關(guān)系時(shí),使得這樣的點(diǎn)P的個(gè)數(shù)為2個(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          8.如圖,D、E在△ABC的邊上,如果ED∥BC,AE:BE=1:2,BC=6,那么$\overrightarrow{DE}$的模為(  )
          A.-2B.-3C.2D.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          9.如圖,在△ABC中,AB=AC,∠BAC=120°,D是BC的中點(diǎn),DE⊥AB于點(diǎn)E,若EA=2,則BE=( 。
          A.3B.4C.6D.8

          查看答案和解析>>

          同步練習(xí)冊答案