日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】凈覺寺享有“家東第一寺”的美譽(yù),是一座規(guī)模較大,布局嚴(yán)顏,結(jié)構(gòu)合理,獨(dú)具一格的古建筑群體,被國務(wù)院批準(zhǔn)列入第六批全國重點(diǎn)文物保護(hù)單位名單,某校社會(huì)實(shí)踐小組為了測量寺內(nèi)一古塔的高度,在地面上處垂直于地面豎立了高度為米的標(biāo)桿,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線上,測得米,將標(biāo)桿向后平移到點(diǎn)處,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線上(點(diǎn),點(diǎn),點(diǎn),點(diǎn)與古塔底處的點(diǎn)在同一直線上)這時(shí)測得米,米,請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算古塔的高度.

          【答案】答案見解析.

          【解析】

          易知EDC∽△EBA,FHG∽△FBA,可得 , ,因?yàn)?/span>DC=HG,推出,列出方程求出CA=40(米),由,可得,由此即可解決問題.

          解:

          ,

          又∵DC=HG

          ,

          解得:

          ,,

          解得:,

          答:塔的高度米.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線yax2+bx+ca≠0)的對(duì)稱軸為x=﹣1,且拋物線經(jīng)過 A1,0),C03)兩點(diǎn),與x軸交于點(diǎn)B

          1)求拋物線的解析式;

          2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求此時(shí)點(diǎn)M的坐標(biāo);

          3)設(shè)點(diǎn)P為拋物線對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

          與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

          x

          30

          32

          34

          36

          y

          40

          36

          32

          28

          (1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);

          (2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價(jià)應(yīng)定為多少元?

          (3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a0)中的x與y的部分對(duì)應(yīng)值如表

          x

          1

          0

          1

          3

          y

          1

          3

          5

          3

          下列結(jié)論:

          ac<0;

          當(dāng)x>1時(shí),y的值隨x值的增大而減。

          3是方程ax2+(b1)x+c=0的一個(gè)根;

          當(dāng)1<x<3時(shí),ax2+(b1)x+c>0.

          其中正確的結(jié)論是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.

          (1)求m的取值范圍;

          (2)寫出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形中,,,且于點(diǎn),點(diǎn)分別是邊上的動(dòng)點(diǎn),且.

          ①求證:四邊形是平行四邊形;

          ②當(dāng)為何值時(shí),四邊形是矩形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)OAC、BD的長()是方程的兩個(gè)根.點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿A→O→B→A的方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒).

          1)求ACBD的長;

          2)求當(dāng)AP恰好平分時(shí),點(diǎn)P運(yùn)動(dòng)時(shí)間t的值;

          3)在運(yùn)動(dòng)過程中,是否存在點(diǎn)P,使是等腰三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t的值:若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,D、E分別是AC、AB的中點(diǎn),CFABED的延長線于點(diǎn)F,連接AF、CE.

          (1)求證:四邊形BCEF是平行四邊形;

          (2)當(dāng)△ABC滿足什么條件時(shí),四邊形AECF是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.

          (1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?

          (2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

          查看答案和解析>>

          同步練習(xí)冊答案