日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+2x+b的圖象可能是(
          A.
          B.
          C.
          D.

          【答案】C
          【解析】解:當(dāng)x=0時,一次函數(shù)中y=b,二次函數(shù)中y=b,
          ∴一次函數(shù)與二次函數(shù)交于點(diǎn)(0,b),
          ∴B、D不正確;
          ∵A、C中二次函數(shù)圖象開口向上,
          ∴a>0,
          ∴一次函數(shù)y=ax+b為增函數(shù),
          ∴C選項正確.
          故選C.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的圖象和性質(zhì)(一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)),還要掌握二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn))的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】概念學(xué)習(xí)

          規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,例如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3),讀作“﹣3的圈4次方,一般地,把 (a≠0)記作 a,讀作“a的圈n次方”.

          初步探究

          (1)直接寫出計算結(jié)果:2=________,=________;

          (2)關(guān)于除方,下列說法錯誤的是________

          A.任何非零數(shù)的圈2次方都等于1; B.對于任何正整數(shù)n,1=1;

          C.3=4 ; D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).

          深入思考

          我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?

          (1)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成冪的形式.

          (﹣3)=________;5=________;=________.

          (2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式等于________;

          (3)算一算:24÷23+(-16)×2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(中考·安徽)如圖,已知反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).

          (1)求k1,k2,b的值;

          (2)求△AOB的面積;

          (3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=的圖象上的兩點(diǎn),且x1<x2,y1<y2,指出點(diǎn)M,N位于哪個象限,并簡要說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(t>0).過點(diǎn)DDFBC于點(diǎn)F,連接DEEF

          (1)求證:AE=DF;

          (2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

          (3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】當(dāng)m為何值時,關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0.
          (1)有兩個不相等的實數(shù)根;
          (2)有兩個相等的實數(shù)根;
          (3)沒有實數(shù)根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在紙面上有一數(shù)軸,按要求折疊紙面:

          (1)若折疊后數(shù)1對應(yīng)的點(diǎn)與數(shù)﹣1對應(yīng)的點(diǎn)重合,則此時數(shù)﹣3對應(yīng)的點(diǎn)與數(shù)   對應(yīng)的點(diǎn)重合;

          (2)若折疊后數(shù)2對應(yīng)的點(diǎn)與數(shù)﹣4對應(yīng)的點(diǎn)重合,則此時數(shù)0對應(yīng)的點(diǎn)與數(shù)對   應(yīng)的點(diǎn)重合;若這樣折疊后,數(shù)軸上有A、B兩點(diǎn)也重合,且A、B兩點(diǎn)之間的距離為11(點(diǎn)BA點(diǎn)的右側(cè)),則點(diǎn)A對應(yīng)的數(shù)為   ,點(diǎn)B對應(yīng)的數(shù)為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4

          1)求證:AB=AC;

          2)已知SABC40cm2,如圖2,動點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動,同時動點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時整個運(yùn)動都停止. 設(shè)點(diǎn)M運(yùn)動的時間為t(秒),

          ①若DMN的邊與BC平行,求t的值;

          ②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,ABC的頂點(diǎn)A、B、C在小正方形的頂點(diǎn)上,將ABC向下平移4個單位、再向右平移3個單位得到A1B1C1,然后將A1B1C1繞點(diǎn)A1順時針旋轉(zhuǎn)90°得到A1B2C2

          (1)在網(wǎng)格中畫出A1B1C1A1B2C2;

          (2)計算線段AC從開始變換到A1 C2的過程中掃過區(qū)域的面積(重疊部分不重復(fù)計算)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=x2﹣2x﹣3.
          (1)將y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
          (2)與y軸的交點(diǎn)坐標(biāo)是 , 與x軸的交點(diǎn)坐標(biāo)是
          (3)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.

          x

          y


          (4)不等式x2﹣2x﹣3>0的解集是

          查看答案和解析>>

          同步練習(xí)冊答案