日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為E、F、G、H,順次連接這四個(gè)點(diǎn),得四邊形EFGH.

          (1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當(dāng)四邊形ABCD為矩形時(shí),請(qǐng)判斷:四邊形EFGH的形狀(不要求證明);
          (2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=α(0°<α<90°),
          ①試用含α的代數(shù)式表示∠HAE;
          ②求證:HE=HG;
          ③四邊形EFGH是什么四邊形?并說明理由.

          【答案】
          (1)

          解:四邊形EFGH的形狀是正方形


          (2)

          解:①∠HAE=90°+α,

          在平行四邊形ABCD中AB∥CD,

          ∴∠BAD=180°﹣∠ADC=180°﹣α,

          ∵△HAD和△EAB是等腰直角三角形,

          ∴∠HAD=∠EAB=45°,

          ∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+α,

          答:用含α的代數(shù)式表示∠HAE是90°+α

          ②證明:∵△AEB和△DGC是等腰直角三角形,

          ∴AE= AB,DG= CD,

          在平行四邊形ABCD中,AB=CD,

          ∴AE=DG,

          ∵△AHD和△DGC是等腰直角三角形,

          ∴∠HDA=∠CDG=45°,

          ∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,

          ∵△AHD是等腰直角三角形,

          ∴HA=HD,

          ∴△HAE≌△HDG,

          ∴HE=HG.

          ③答:四邊形EFGH是正方形,

          理由是:由②同理可得:GH=GF,F(xiàn)G=FE,

          ∵HE=HG,

          ∴GH=GF=EF=HE,

          ∴四邊形EFGH是菱形,

          ∵△HAE≌△HDG,

          ∴∠DHG=∠AHE,

          ∵∠AHD=∠AHG+∠DHG=90°,

          ∴∠EHG=∠AHG+∠AHE=90°,

          ∴四邊形EFGH是正方形.


          【解析】(1)根據(jù)等腰直角三角形的性質(zhì)得到∠E=∠F=∠G=∠H=90°,求出四邊形是矩形,根據(jù)勾股定理求出AH=HD= AD,DG=GC= CD,CF=BF= BC,AE=BE= AB,推出EF=FG=GH=EH,根據(jù)正方形的判定推出四邊形EFGH是正方形即可;(2)①根據(jù)平行四邊形的性質(zhì)得出,∠BAD=180°﹣α,根據(jù)△HAD和△EAB是等腰直角三角形,得到∠HAD=∠EAB=45°,求出∠HAE即可;②根據(jù)△AEB和△DGC是等腰直角三角形,得出AE= AB,DG= CD,平行四邊形的性質(zhì)得出AB=CD,求出∠HDG=90°+a=∠HAE,根據(jù)SAS證△HAE≌△HDG,根據(jù)全等三角形的性質(zhì)即可得出HE=HG;③與②證明過程類似求出GH=GF,F(xiàn)G=FE,推出GH=GF=EF=HE,得出菱形EFGH,證△HAE≌△HDG,求出∠AHD=90°,∠EHG=90°,即可推出結(jié)論.
          【考點(diǎn)精析】利用等腰直角三角形和正方形的判定方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等;先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:在平面直角坐標(biāo)系中,拋物線 交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為x=﹣2,點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn).

          (1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
          (2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.
          (3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠PDA=90°時(shí),Rt△ADP與Rt△AOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,

          (1)求證:四邊形AEBD是菱形;
          (2)如果OA=3,OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】當(dāng)m,n是正實(shí)數(shù),且滿足m+n=mn時(shí),就稱點(diǎn)P(m, )為“完美點(diǎn)”,已知點(diǎn)A(0,5)與點(diǎn)M都在直線y=-x+b上,點(diǎn)B,C是“完美點(diǎn)”,且點(diǎn)B在線段AM上,若MC= ,AM=4 ,求△MBC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解不等式組: ,并把它的解在數(shù)軸上表示出來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2.
          (1)求OE和CD的長;
          (2)求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A,B,C,D都在⊙O上, 的度數(shù)等于84°,CA是∠OCD的平分線,則∠ABD+∠CAO=°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一艘漁船位于燈塔P的北偏東30°方向,距離燈塔18海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東55°方向上的B處,此時(shí)漁船與燈塔P的距離約為海里(結(jié)果取整數(shù))(參考數(shù)據(jù):sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
          (1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是事件;(可能,必然,不可能)
          (2)請(qǐng)用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

          查看答案和解析>>

          同步練習(xí)冊答案