【題目】在△ABC中,AB=15,AC=13,BC邊上高AD=12,試求△ABC周長(zhǎng)。
【答案】周長(zhǎng)為42或32
【解析】
試題由題可得△ABC為銳角三角形和鈍角三角形兩種情況.
銳角三角形時(shí),AB=15,AC=13,∠ADC=∠ADB=90°,
在△ABD中,∠ADB=90°,由勾股定理得 BD2=AB2– AD2=152-122=81. ∴BD=
在△ACD中,∠ADC=90°,由勾股定理得 CD2=AC2– AD2=132-122=25. ∴CD=
∴△ABC的周長(zhǎng)=AC+AB+CB=AC+AB+BD+CD=13+15+9+5=42.
鈍角三角形時(shí),AB=15,AD=12,∠ADB=90°,
在△ABD中,∠ADB=90°,由勾股定理得 BD2=AB2– AD2=152-122=81. ∴BD=
在△ACD中,∠ADC=90°,由勾股定理得 CD2=AC2– AD2=132-122=25. ∴CD=
∴BC=BD-CD=9-5=4. ∴△ABC的周長(zhǎng)=AC+AB+CB=15+13+4=32.
∴ △ABC的周長(zhǎng)是32或42.
考點(diǎn): 勾股定理的運(yùn)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請(qǐng)你幫小明求出砌墻磚塊的厚度a的大小(每塊磚的厚度相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在CD邊上,點(diǎn)F在DC延長(zhǎng)線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一副秋千架,左圖是從正面看,當(dāng)秋千繩子自然下垂時(shí),踏板離地面0.5m(踏板厚度忽略不計(jì)), 右圖是從側(cè)面看,當(dāng)秋千踏板蕩起至點(diǎn)B位置時(shí),點(diǎn)B離地面垂直高度BC為1m,離秋千支柱AD的水平距離BE為1.5m(不考慮支柱的直徑).求秋千支柱AD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)E、F在四邊形ABCD的對(duì)角線BD所在的直線上,且BE=DF,AE∥CF,請(qǐng)?jiān)偬砑右粋(gè)條件(不要在圖中再增加其它線段和字母),能證明四邊形ABCD是平行四邊形,并證明你的想法.
你所添加的條件:____________________________________;
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是由兩個(gè)正方形組成的長(zhǎng)方形花壇ABCD,小明從頂點(diǎn)A沿著花壇間小路直到走到長(zhǎng)邊中點(diǎn)O,再?gòu)闹悬c(diǎn)O走到正方形OCDF的中心,再?gòu)闹行?/span>
走到正方形
GFH的中點(diǎn)
,又從中心
走到正方形
IHJ的中心
,再?gòu)闹行?/span>
走到正方形
KJP的中心
,一共走了
m,則長(zhǎng)方形花壇ABCD的周長(zhǎng)是( )
A. 36m B. 48m C. 96m D. 60m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD∥BC,AB=4cm,BC=8cm,動(dòng)點(diǎn)M從點(diǎn)D出發(fā),按折線DCBAD方向以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),按折線DABCD方向以1cm/s的速度運(yùn)動(dòng).
(1)若動(dòng)點(diǎn)M、N同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘兩點(diǎn)相遇?
(2)若點(diǎn)E在線段BC上,且BE=3cm,若動(dòng)點(diǎn)M、N同時(shí)出發(fā),相遇時(shí)停止運(yùn)動(dòng),經(jīng)過(guò)幾秒鐘,點(diǎn)A、E、M、N組成平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過(guò)點(diǎn)D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(3)若點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在平面內(nèi),以線段MN為對(duì)角線作正方形MPNQ,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是△ABC內(nèi)一點(diǎn),且它到三角形的三個(gè)頂點(diǎn)距離之和最小,則P點(diǎn)叫△ABC的費(fèi)馬點(diǎn)(Fermat point).已經(jīng)證明:在三個(gè)內(nèi)角均小于120°的△ABC中,當(dāng)∠APB=∠APC=∠BPC=120°時(shí),P就是△ABC的費(fèi)馬點(diǎn).若點(diǎn)P是腰長(zhǎng)為 的等腰直角三角形DEF的費(fèi)馬點(diǎn),則PD+PE+PF= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com