日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,C為線段AB上一點,點DBC的中點,且AB18cm,AC4CD

          1)圖中共有   條線段;

          2)求AC的長;

          3)若點E在直線AB上,且EA2cm,求BE的長.

          【答案】(1)5(2)12cm(3)16cm或20cm

          【解析】

          1)線段的個數(shù)為,n為點的個數(shù).

          (2)由題意易推出CD的長度,再算出AC4CD即可.

          (3)E點可在A點的兩邊討論即可.

          (1)圖中有四個點,線段有6

          故答案為:6;

          (2)由點D為BC的中點,得

          BC2CD2BD

          由線段的和差,得

          AB=AC+BC,即4CD+2CD=18,

          解得CD=3,

          AC4CD4×312cm

          3當點E在線段AB上時,由線段的和差,得

          BEABAE18216cm,

          當點E在線段BA的延長線上,由線段的和差,得

          BEAB+AE18+220cm

          綜上所述:BE的長為16cm或20cm.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=8cm,BC=4cm,AB=5cm.從初始時刻開始,動點P,Q 分別從點A,B同時出發(fā),運動速度均為1cm/s,動點P沿A﹣B﹣﹣C﹣﹣E的方向運動,到點E停止;動點Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運動,到點D停止,設運動時間為xs,△PAQ的面積為ycm2 , (這里規(guī)定:線段是面積為0的三角形)

          解答下列問題:
          (1)當x=2s時,y=cm2;當x= s時,y=cm2
          (2)當5≤x≤14 時,求y與x之間的函數(shù)關系式.
          (3)當動點P在線段BC上運動時,求出 S梯形ABCD時x的值.
          (4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖①,在銳角△ABC中,D,E分別為AB,BC中點,F(xiàn)為AC上一點,且∠AFE=∠A,DM∥EF交AC于點M.

          (1)求證:DM=DA;
          (2)點G在BE上,且∠BDG=∠C,如圖②,求證:△DEG∽△ECF;
          (3)在圖②中,取CE上一點H,使∠CFH=∠B,若BG=1,求EH的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,等邊△ABC中,DAC中點,∠EDF=120°,DFABF點,且AF=nBF(n為常數(shù),且n1).

          (1)求證:DF=DE;

          (2)如圖1,求證:AF﹣CE=AB;

          (3)如圖2,當n=   時,過DDMBCM點,CEM的中點.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,ABAC , 分別以點B和點C為圓心,大于BC一半的長為半徑作圓弧,兩弧相交于點M和點N , 作直線MNAB于點D;連結(jié)CD.若AB=7,AC=5,則△ACD的周長為( )

          A.2
          B.12
          C.17
          D.19

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】問題情境:已知:如圖1,直線ABCD,現(xiàn)將直角三角板△PMN放入圖中,其中∠MPN=90°,點P始終在直線MN右側(cè).PMAB于點E,PNCD于點F,試探究:∠PFD與∠AEM的數(shù)量關系.

          (1)特例如圖2,當點P在直線AB上(即點E與點P重合)時,直接寫出∠PFD與∠AEM的數(shù)量關系,不必證明;

          (2)類比探究:如圖1,當點PABCD之間時,猜想∠PFD與∠AEM的數(shù)量關系,并說明理由;

          (3)拓展延伸:如圖3,當點P在直線AB的上方時,PNAB于點H,其他條件不變,猜想∠PFD與∠AEM的數(shù)量關系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算題
          (1)計算:|1﹣ |﹣3tan30°+(π﹣2017)0﹣(﹣ 1
          (2)解不等式組 并在數(shù)軸上表示它的解集.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了解某市市民晚飯后1小時內(nèi)的生活方式,調(diào)查小組設計了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項,用隨機抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.

          根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
          (1)本次共調(diào)查了名市民;
          (2)補全條形統(tǒng)計圖;
          (3)該市共有480萬市民,估計該市市民晚飯后1小時內(nèi)鍛煉的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】甲乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務的收費方案.

          甲公司方案:每月的養(yǎng)護費用y(元)與綠化面積x(平方米)是一次函數(shù)關系,如圖所示.

          乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎上,超過部分每平方米收取4.

          (1)求如圖所示的yx的函數(shù)解析式;(不要求寫取值范圍)

          (2)如果某學校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務,每月的綠化養(yǎng)護費用較少.

          查看答案和解析>>

          同步練習冊答案