日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•溫州)如圖,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0),B(2,2).連接OB,AB.
          (1)求該拋物線的解析式;
          (2)求證:△OAB是等腰直角三角形;
          (3)將△OAB繞點(diǎn)O按順時針方向旋轉(zhuǎn)135°得到△OA′B′,寫出△OA′B′的邊A′B′的中點(diǎn)P的坐標(biāo).試判斷點(diǎn)P是否在此拋物線上,并說明理由.

          【答案】分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,通過聯(lián)立方程組即可求出拋物線的解析式;
          (2)過B作BC⊥x軸于C,根據(jù)A、B的坐標(biāo)易求得OC=BC=AC=2,由此可證得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可證得△OAB是等腰直角三角形;
          (3)當(dāng)△OAB繞點(diǎn)O按順時針方向旋轉(zhuǎn)135°時,OB′正好落在y軸上,易求得OB、AB的長,即可得到OB′、A′B′的長,從而可得到A′、B′的坐標(biāo),進(jìn)而可得到A′B′的中點(diǎn)P點(diǎn)的坐標(biāo),然后代入拋物線中進(jìn)行驗(yàn)證即可.
          解答:解:(1)由題意得,
          解得
          ∴該拋物線的解析式為:y=-x2+2x;

          (2)過點(diǎn)B作BC⊥x軸于點(diǎn)C,則OC=BC=AC=2;
          ∴∠BOC=∠OBC=∠BAC=∠ABC=45°;
          ∴∠OBA=90°,OB=AB;
          ∴△OAB是等腰直角三角形;

          (3)∵△OAB是等腰直角三角形,OA=4,
          ∴OB=AB=2;
          由題意得:點(diǎn)A′坐標(biāo)為(-2,-2
          ∴A′B′的中點(diǎn)P的坐標(biāo)為(-,-2);
          當(dāng)x=-時,y=-×(-2+2×(-)≠-2;
          ∴點(diǎn)P不在二次函數(shù)的圖象上.
          點(diǎn)評:此題主要考查了二次函數(shù)解析式的確定、等腰直角三角形的判定、圖形的旋轉(zhuǎn)變化等知識.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2010年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2010•溫州)如圖,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0),B(2,2).連接OB,AB.
          (1)求該拋物線的解析式;
          (2)求證:△OAB是等腰直角三角形;
          (3)將△OAB繞點(diǎn)O按順時針方向旋轉(zhuǎn)135°得到△OA′B′,寫出△OA′B′的邊A′B′的中點(diǎn)P的坐標(biāo).試判斷點(diǎn)P是否在此拋物線上,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圓》(15)(解析版) 題型:解答題

          (2010•溫州)如圖,在正方形ABCD中,AB=4,O為對角線BD的中點(diǎn),分別以O(shè)B,OD為直徑作⊙O1,⊙O2
          (1)求⊙O1的半徑;
          (2)求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(20)(解析版) 題型:解答題

          (2010•溫州)如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BB1∥AC.動點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個單位的速度運(yùn)動,同時動點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個單位的速度運(yùn)動.過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF上AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動的時間為t秒.
          (1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;
          (2)當(dāng)△DEG與△ACB相似時,求t的值;
          (3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
          ①當(dāng)t>時,連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
          ②當(dāng)線段A′C′與射線BB′,有公共點(diǎn)時,求t的取值范圍(寫出答案即可).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2010•溫州)如圖,已知一商場自動扶梯的長l為10米,該自動扶梯到達(dá)的高度h為6米,自動扶梯與地面所成的角為θ,則tanθ的值等于( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊答案