日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀材料
          如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結(jié)BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
          解決問題
          (1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
          (2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
          (3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)

          【答案】分析:(1)如答圖②所示,連接OC、OD,證明△BOF≌△COD;
          (2)如答圖③所示,連接OC、OD,證明△BOF∽△COD,相似比為;
          (3)如答圖④所示,連接OC、OD,證明△BOF∽△COD,相似比為tan
          解答:解:(1)猜想:BF=CD.理由如下:
          如答圖②所示,連接OC、OD.

          ∵△ABC為等腰直角三角形,點O為斜邊AB的中點,
          ∴OB=OC,∠BOC=90°.
          ∵△DEF為等腰直角三角形,點O為斜邊EF的中點,
          ∴OF=OD,∠DOF=90°.
          ∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
          ∴∠BOF=∠COD.
          ∵在△BOF與△COD中,

          ∴△BOF≌△COD(SAS),
          ∴BF=CD.

          (2)答:(1)中的結(jié)論不成立.
          如答圖③所示,連接OC、OD.

          ∵△ABC為等邊三角形,點O為邊AB的中點,
          =tan30°=,∠BOC=90°.
          ∵△DEF為等邊三角形,點O為邊EF的中點,
          =tan30°=,∠DOF=90°.
          ==
          ∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
          ∴∠BOF=∠COD.
          在△BOF與△COD中,
          ==,∠BOF=∠COD,
          ∴△BOF∽△COD,
          =

          (3)如答圖④所示,連接OC、OD.

          ∵△ABC為等腰三角形,點O為底邊AB的中點,
          =tan,∠BOC=90°.
          ∵△DEF為等腰三角形,點O為底邊EF的中點,
          =tan,∠DOF=90°.
          ==tan
          ∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
          ∴∠BOF=∠COD.
          在△BOF與△COD中,
          ==tan,∠BOF=∠COD,
          ∴△BOF∽△COD,
          =tan
          點評:本題是幾何綜合題,考查了旋轉(zhuǎn)變換中相似三角形、全等三角形的判定與性質(zhì).解題關(guān)鍵是:第一,善于發(fā)現(xiàn)幾何變換中不變的邏輯關(guān)系,即△BOF≌△COD或△BOF∽△COD;第二,熟練運用等腰直角三角形、等邊三角形、等腰三角形的相關(guān)性質(zhì).本題(1)(2)(3)問的解題思路一脈相承,由特殊到一般,有利于同學(xué)們進行學(xué)習(xí)與探究.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀:如圖(1),正方形ABCD的邊AB在x軸上,C、D在拋物線y=-x(x-2)的圖象上,我們稱正方形ABCD內(nèi)接于拋物線y=-x(x-2).拋物線y=-x(x-2)的對稱軸交x軸于點M,設(shè)正方形ABCD的邊長為a1,那么a1滿足哪個二元一次方程呢?由對稱性可知M是AB的中點,則AM=
          1
          2
          a1
          ,AD=a1.易知OM=1,所以O(shè)A=1-
          1
          2
          a1
          ,所以D點坐標(biāo)為(1-
          1
          2
          a1,a1)
          ,代入拋物線解析式并化簡可知a1滿足二元一次方程(
          1
          2
          )2a12+a1-1=0
          ;根據(jù)以上材料探索:(第(1)小題要求寫出過程,其它兩小題只要寫出答案,不必要過程)
          (1)如圖(2),若并排兩個正方形內(nèi)接于拋物線y=-x(x-2),則每個正方形的邊長a2滿足的二元一次方程是
           

          (2)如圖(3),若并排三個正方形內(nèi)接于拋物線y=-x(x-2),則每個正方形的邊長a3滿足的二元一次方程是
           

          (3)如圖(4),若并排n個正方形內(nèi)接于拋物線y=-x(x-2),則每個正方形的邊長an滿足的二元一次方程是
           
          ;
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          (2013•鹽城)閱讀材料
          如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結(jié)BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
          解決問題
          (1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
          (2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
          (3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出
          BFCD
          的值(用含α的式子表示出來)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧鞍山第26中學(xué)九年級上學(xué)期第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀材料

          如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結(jié)BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:

          (1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;

          (2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;

          (3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年蘇教版初中數(shù)學(xué)七年級下 11.2全等三角形練習(xí)卷(解析版) 題型:解答題

          閱讀下列材料:

          如圖(1)所示,把△ABC沿直線BC移動線段BC那樣長的距離可以變到△ECD的位置;

          如圖(2)所示,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;

          如圖(3)所示,以點A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.

          像這樣,只改變圖形的位置,而不改變其形狀大小的圖形變換叫做全等變換. 在全等變換中可以清楚地識別全等三角形的對應(yīng)元素,以上的三種全等變換分別叫平移變換、翻折變換和旋轉(zhuǎn)變換.

          問題:如圖(4),△ABC≌△DEF,B和E、C和F是對應(yīng)頂點,問通過怎樣的全等變換可以使它們重合,并指出它們相等的邊和角.

          ­

          查看答案和解析>>

          同步練習(xí)冊答案