日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直徑為13的⊙E,經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OAOB)的長分別是方程x2+kx+600的兩根.

          (1)OAOB____;

          (2)若點(diǎn)C在劣弧OA上,連結(jié)BCOAD,當(dāng)△BOC∽△BDA時(shí),點(diǎn)D的坐標(biāo)為______

          【答案】1125;(2)(,0).

          【解析】

          試題解析:連接AB,

          ∵∠AOB=90°,

          ∴AB⊙E的直徑,AB=13,

          ∴OA2+OB2=AB2=169

          根據(jù)根與系數(shù)的關(guān)系可得:

          OA+OB=-k0,OA×OB=60,

          ∴OA2+OB2=OA+OB2-2OAOB=k2-120=169,

          ∴k=-17,

          原方程為x2-17x+60=0,

          解得x1=5,x2=12

          ∴OA=12,OB=5

          ∴OAOB=125

          2)過點(diǎn)DDH⊥ABH,如圖.

          ∵△BOC∽△BDA,

          ∴∠OBC=∠DBA

          △BOD△BHD中,

          ∴△BOD≌△BHD,

          ∴BH=BO=5DH=OD

          設(shè)OD=x,則DH=x,DA=12-x

          Rt△DHA中,根據(jù)勾股定理可得,

          x2+13-52=12-x2

          解得x=,

          點(diǎn)D的坐標(biāo)為(,0).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)填空:如圖,我們知道,一條線段OA繞著它的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所形成的圖形叫做 ;一個(gè)矩形ABCD繞著它的邊AB旋轉(zhuǎn)一周所形成的圖形叫做 ;

          2)如圖,將一個(gè)直角三角形ABC(∠C=900)繞著它的直角邊AC旋轉(zhuǎn)一周,也能形成一個(gè)幾何圖形。

          a)在圖中畫出這個(gè)旋轉(zhuǎn)圖形的草圖,并說出它的名稱。

          b)如果ΔABCAC=20,BC=15,把這個(gè)旋轉(zhuǎn)圖形沿著ΔABC的中位線DE且垂直于AC的方向橫截,得到一個(gè)什么樣的圖形?并請你計(jì)算所截圖形的上半部分的全面積。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).

          (1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);

          (2)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請說明理由;

          (3)在以AB為直徑的M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖甲,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB,PC=1,求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.

          解題思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,如圖乙所示,連接PP′.

          (1)△PPB 三角形,△PPA 三角形,∠BPC °;

          (2)利用△BPC可以求出△ABC的邊長為

          如圖丙,在正方形ABCD內(nèi)有一點(diǎn)P,且PA,BP,PC=1;

          (3)求∠BPC度數(shù)的大;

          (4)求正方形ABCD的邊長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知平行四邊形, ,垂足為的延長線相交于,,連接;

          (1)如圖,求證:四邊形是菱形;

          (2)如圖,連接,,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=﹣x22x+3的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

          (1)求點(diǎn)AB、C的坐標(biāo);

          (2)點(diǎn)M(m0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQAB交拋物線于點(diǎn)Q,過點(diǎn)QQNx軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長;

          (3)當(dāng)矩形PQNM的周長最大時(shí),m的值是多少?并求出此時(shí)的△AEM的面積;

          (4)(3)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ,過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG2DQ,求點(diǎn)F的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD的對角線AC,BD相交于點(diǎn)OOAB是等邊三角形.

          1)求證:ABCD為矩形;

          2)若AB4,求ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】臨近期末考試,心理專家建議考生可通過以下四種方式進(jìn)行考前減壓:.享受美食,.交流談心,.體育鍛煉,.欣賞藝術(shù).

          1)隨機(jī)采訪一名九年級考生,選擇其中某一種方式,他選擇“享受美食”的概率是

          2)同時(shí)采訪兩名九年級考生,請用畫樹狀圖或列表的方法求他們中至少有一人選擇“欣賞藝術(shù)”的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC 中,E、F 分別為線段 AB、AC 上的點(diǎn)(不與 A、B、C 重合)

          1)如圖 1,若 EF//BC,求證:

          2)如圖 2,若 EF 不與 BC 平行,(1)中的結(jié)論是否仍然成立?請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案