日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2008•樂山)如圖AD⊥CD,AB=13,BC=12,CD=3,AD=4,則sinB=( )

          A.
          B.
          C.
          D.
          【答案】分析:根據(jù)勾股定理可求AC的長度;由三邊長度判斷△ABC為直角三角形.根據(jù)三角函數(shù)定義求解.
          解答:解:由勾股定理知,AC2=CD2+AD2=25,
          ∴AC=5.
          ∵AC2+BC2=169=AB2,
          ∴△CBA是直角三角形.
          ∴sinB==
          故選A.
          點評:本題利用了勾股定理和勾股定理的逆定理,考查三角函數(shù)的定義.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

          (2008•樂山)如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,且OA>OB,以AB為直徑的圓過點C.若點C的坐標(biāo)為(0,2),AB=5,A,B兩點的橫坐標(biāo)xA,xB是關(guān)于x的方程x2-(m+2)x+n-1=0的兩根.
          (1)求m,n的值;
          (2)若∠ACB平分線所在的直線l交x軸于點D,試求直線l對應(yīng)的一次函數(shù)解析式;
          (3)過點D任作一直線l′分別交射線CA,CB(點C除外)于點M,N.則的是否為定值?若是,求出該定值;若不是,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2008年四川省樂山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2008•樂山)如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,且OA>OB,以AB為直徑的圓過點C.若點C的坐標(biāo)為(0,2),AB=5,A,B兩點的橫坐標(biāo)xA,xB是關(guān)于x的方程x2-(m+2)x+n-1=0的兩根.
          (1)求m,n的值;
          (2)若∠ACB平分線所在的直線l交x軸于點D,試求直線l對應(yīng)的一次函數(shù)解析式;
          (3)過點D任作一直線l′分別交射線CA,CB(點C除外)于點M,N.則的是否為定值?若是,求出該定值;若不是,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:選擇題

          (2008•樂山)如圖,在直角梯形ABCD中AD∥BC,點E是邊CD的中點,若AB=AD+BC,BE=,則梯形ABCD的面積為( )

          A.
          B.
          C.
          D.25

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市江東區(qū)初中畢業(yè)生學(xué)業(yè)質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:填空題

          (2008•樂山)如圖是一個幾何體的三視圖,根據(jù)圖示,可計算出該幾何體的側(cè)面積為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2008年四川省樂山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2008•樂山)如圖,E,F(xiàn)分別是等腰△ABC的腰AB,AC的中點
          (1)用尺規(guī)在BC邊上求作一點M,使四邊形AEMF為菱形;(不寫作法,保留作圖痕跡)
          (2)若AB=5cm,BC=8cm,求菱形AEMF的面積.

          查看答案和解析>>

          同步練習(xí)冊答案