日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)m是不小于-1的實數(shù),關(guān)于x的方程x2+2(m-2)x+m2-3m+3=0有兩個不相等的實數(shù)根x1、x2,
          (1)若x12+x22=6,求m值;
          (2)求的最大值.
          【答案】分析:(1)首先根據(jù)根的判別式求出m的取值范圍,利用根與系數(shù)的關(guān)系,求出符合條件的m的值.
          (2)把利用根與系數(shù)的關(guān)系得到的關(guān)系式代入代數(shù)式,細(xì)心化簡,結(jié)合m的取值范圍求出代數(shù)式的最大值.
          解答:解:∵方程有兩個不相等的實數(shù)根,
          ∴△=b2-4ac=4(m-2)2-4(m2-3m+3)=-4m+4>0,
          ∴m<1,
          結(jié)合題意知:-1≤m<1.
          (1)∵x12+x22=(x1+x22-2x1x2=4(m-2)2-2(m2-3m+3)=2m2-10m+10=6
          ,
          ∵-1≤m<1,
          ;

          (2)=
          =(-1≤m<1).
          ∴當(dāng)m=-1時,式子取最大值為10.
          點評:本題的計算量比較大,需要很細(xì)心的求解.用到一元二次方程的根的判別式△=b2-4ac來求出m的取值范圍;利用根與系數(shù)的關(guān)系x1+x2=,x1x2=來化簡代數(shù)式的值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          設(shè)m是不小于-1的實數(shù),關(guān)于x的方程x2+2(m-2)x+m2-3m+3=0有兩個不相等的實數(shù)根x1、x2,
          (1)若x12+x22=6,求m值;
          (2)求
          mx12
          1-x1
          +
          mx22
          1-x2
          的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          設(shè)m是不小于-1的實數(shù),使得關(guān)于x的方程x2+2(m-2)x+m2-3m+3=0的兩個不相等的實數(shù)根x1,x2.求:若x12+x22=6,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          關(guān)于x的二次函數(shù)y=x2+2(m-2)x+m2-3m+3與x軸有兩個交點,A(x1,0),B(x2,0)精英家教網(wǎng),頂點為C,設(shè)m是不小于-1的實數(shù).
          (1)求頂點C的坐標(biāo),并說明C點在什么樣的線上運動;
          (2)若OA2+OB2=6,求m值;
          (3)求代數(shù)式
          mx12
          1-x1
          +
          mx22
          1-x2
          的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡市羅田一中自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

          設(shè)m是不小于-1的實數(shù),關(guān)于x的方程x2+2(m-2)x+m2-3m+3=0有兩個不相等的實數(shù)根x1、x2
          (1)若x12+x22=6,求m值;
          (2)求的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案